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Abstract

Sporobolomyces lactosus is a pink yeast-like fungus that is not congeneric with other members of Sporobolomyces (Basidiomy-
cota, Microbotryomycetes, Sporidiobolales). During our ongoing studies of pink yeasts we determined that S. lactosus was most 
closely related to Pseudeurotium zonatum (Ascomycota, Leotiomycetes, Thelebolales). A molecular phylogenetic analysis using 
sequences of the ITS region and the small and large subunit (SSU, LSU) rRNA genes, indicated that four isolates of S. lactosus, 
including three ex-type isolates, were placed in Thelebolales with maximum support. A new genus is proposed to accommodate 
S. lactosus, Inopinatum. This is the first pink yeast reported in Leotiomycetes.

Pink-pigmented yeasts in the order Sporidiobolales (Basidi-
omycota, Pucciniomycotina, Microbotryomycetes) produce 
lipid droplets with carotenoid pigments – mostly β-carotene 
and torulene – contributing to the pink to orange-reddish 
colour of colonies [1–3]. These pigments are thought to offer 
antimicrobial, anticancer, and anti-ageing activities and to 
protect against radiation [4, 5]. Because of these characteris-
tics, pink-pigmented yeasts have gained interest from phar-
maceutical, cosmetics, and biotechnology industries [6–8]. 
The pink yeasts were historically placed in two anamorphic 
basidiomycete genera, Rhodotorula and Sporobolomyces. In 
their traditional sense, both these asexual genera are poly-
phyletic, occurring in all three subphyla and several classes 
and orders of Basidiomycota [9–11].

Following the elimination of the use of dual naming systems 
for asexual and sexual morphs of fungi, Rhodotorula and 
Sporobolomyces are now retained only for those species within 
Sporidiobolales [12]. Efforts to reassign many of the species 
once classified into Rhodotorula and Sporobolomyces into 
natural genera are ongoing [8, 12, 13]. At present, the order 
Sporidiobolales is estimated at ca. 260 species of which 42 
have been described [3]; Sporobolomyces currently includes 

ca. 22 species [8, 14, 15]. These are reported from diverse 
habitats including freshwater and marine ecosystems, fruit 
must, surfaces of buildings, food, soil, air, and—the most 
common habitat from which they are isolated—leaf surfaces 
[3, 15–22].

During our studies of pink yeasts in the genus Sporobolomyces, 
we noted that the internal transcribed spacer (ITS) barcode 
sequence of Sporobolomyces lactosus [23] was not similar to 
other species in the genus. Moreover, S. lactosus is not treated 
in Kurtzman et al. [24]. A general Nucleotide blast search 
(https://​blast.​ncbi. ​nlm.​nih.​gov/​Blast.​cgi?) of S. lactosus 
against ex-type sequences of all fungi resulted in Pseudeuro-
tium zonatum CBS 329.36T (Ascomycota, Leotiomycetes, 
Thelebolales) as the closest match with 90.84 % shared iden-
tity. An ex-type culture of S. lactosus was obtained from the 
Culture Collection of Yeasts (CCY:19-21-1T) [23] at the Slovak 
Academy of Sciences (Bratislava, Slovakia). Here we present 
the results of our phylogenetic analyses of S. lactosus and 
formally describe Inopinatum gen. nov. to accommodate it in 
the Thelebolaceae (Thelebolales), as the first known yeast-like 
species in the Leotiomycetes.

http://ijs.microbiologyresearch.org/content/journal/ijsem/
https://doi.org/10.6084/m9.figshare.12495878
https://blast.ncbi.%20nlm.nih.gov/Blast.cgi?
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Sporobolomyces lactosus, CCY:19-21-1T, (Poland: Warsaw, 
Plock Refinery sewage treatment plant) [23], was grown on 
potato dextrose agar (PDA) with 2 % agar, supplemented 
with 50 µg ml−1 chloramphenicol and 100 µg ml−1 ampi-
cillin (BD, Franklin Lakes, New Jersey) to inhibit bacterial 
growth. Samples were removed for DNA isolation by using 
a J-hook to superficially scrape off pieces of fungal tissue. 
DNA was extracted using the Wizard Genomic DNA Purifi-
cation kit (Promega Co., Madison, Wisconsin), following the 

manufacturer’s instructions. Next, we amplified the internal 
transcribed spacer, and nuclear small and large subunits of 
the ribosomal DNA repeat (ITS, SSU, and LSU, respectively). 
Primer combinations used were NS1/NS4 for SSU [25], ITS1f/
ITS4 for ITS [25, 26], and LR0R/LR5 and LR0R/LR7 for LSU 
[27, 28]. PCR reactions consisted of 12.5 µl of Promega 2×PCR 
Master Mix, 1.25 µl of each 10 µm primer, 9.0 µl of H2O, and 
1.0 µl of template DNA. All amplifications were done in an 
Eppendorf Mastercycler ep Thermal Cycler (Hauppauge, New 

Table 1. Sequences of Thelebolales used in phylogenetic analysis

Species Isolate/strain SSU ITS LSU Reference(s)

Antarctomyces pellizariae UFMG 12416T na NR_164245 na [62]

Antarctomyces 
psychrotrophicus*

IMI 378528T na AJ133431 na [69]

Inopinatum lactosum* JCM 8510 AB021676 AB038132 na –

Inopinatum lactosum* C4 na EU551181 na [64]

Inopinatum lactosum* D. Haelew. F-3088a 
(ex-CCY 19-21-1T)

MW471137 MW471139 MW471141 This study

Inopinatum lactosum* D. Haelew. F-3088b 
(ex-CCY 19-21-1T)

MW471138 MW471140 MW471142 This study

Cleistothelebolus 
nipigonensis*

CBS 778.70T na NR_164284 MH871738 [70]

Connersia rilstonii* CBS 537.74 AF096174 KJ755499 FJ176866 [71–73]

Crinula caliciiformis* AFTOL-ID 272 AY544729 KT225524 AY544680 –

Geomyces auratus CBS 108.14T AB015785 NR_111872 NG_042776 [42, 74, 75]

Gymnostellatospora alpina CBS 620.81T na MH861383 MH873132 [70]

Gymnostellatospora japonica* UAMH 9239 na DQ117454 na [76]

Holwaya mucida* TU 112863 KX090898 MH752062 KX090844 [44, 77]

Leuconeurospora 
pulcherrima*

AFTOL-ID 1397 FJ176828 KF049206 FJ176884 [73]

Pleuroascus nicholsonii CBS 345.73T AF096182 NR_156627 AF096196 [71]

Pleuroascus rectipilus CBS 120411T NG_067690 NR_165899 na [78]

Pseudeurotium hygrophilum 
[as Teberdinia hygrophila]

CBS 102670T AY129282 AY129291 na [79]

Pseudeurotium sp. 01NH01 na JX270336 na [80]

Pseudeurotium zonatum AFTOL-ID 1912T DQ471040 NR_111127 DQ470988 [75, 81]

Pseudogymnoascus 
destructans

JGI Genome na JGI genome na –

Pseudogymnoascus roseus* CBS 395.65T AB015778 NR_165894 MH870271 [70, 74]

Ramgea ozimecii CNF 2/9997T na NR_164248 KY368753 [82]

Thelebolus balaustiformis MUT 2357T na NR_159056 NG_067559 [83]

Thelebolus globosus CBS 113940T NG_062682 NR_138367 NG_067263 [60, 73]

Thelebolus stercoreus CBS 718.69T na MH859396 MH871167 [70]

Thelebolus stercoreus* JGI Genome na JGI genome na –

*, Type species; T, ex-type; na, Not available.
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York) under the same cycling conditions as in Haelewaters 
et al. [13].

Maximum likelihood (ML) analyses were done using 
IQ-TREE [29], on a multi-locus dataset of all three amplified 
loci. Representative sequences for all genera in Thelebolales 
were downloaded from NCBI GenBank (Table 1). Sequences 
for each locus were aligned using muscle [30] available from 
the Cipres Science Gateway [31], and then trimmed using the 
command-line version of TrimAl 1.3 [32] with gap threshold 
of 0.6 and minimal coverage of 0.5. Substitution models were 

selected using ModelFinder [33] by considering the Akaike 
Information Criterion corrected for small sample size (AICc): 
TN+F+G4 for SSU (-lnL=2007.697), TIM2e+R2 for ITS 
(-lnL=2411.356), and TIM3 +F+R2 for LSU (-lnL=2300.016). 
ML was inferred for the concatenated SSU–ITS–LSU dataset 
under partitioned models, with rapid bootstrapping under 
1000 replicates [34, 35].

Bayesian analyses were done using a Markov chain Monte 
Carlo (MCMC) approach implemented in the BEAST package 
[36], with a strict clock assuming a constant rate of evolution 

Fig. 1. Phylogenetic placement of Inopinatum lactosum gen. and comb. nov. within Thelebolales, reconstructed from a combined dataset 
of SSU, ITS, and LSU sequences (26 isolates, 2496 characters). The topology is the result of Bayesian inference performed with BEAST. 
Crinula caliciiformis AFTOL-ID 272 and Holwaya mucida TU 112863 were used as outgroups. For each node, pp ≥0.6 and ML bootstrap ≥60 
are presented above/below the branch leading to that node. Thick branches, maximum support from both Bayesian and ML inference; T, 
ex-type; bar, number of substitutions per site.
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across the tree and a Yule Speciation tree prior [37, 38]. The 
nucleotide substitution models, as determined as by jMod-
elTest 2.1.6 [39] under AICc, were as follows: HKY+G for 
SSU (-lnL=2008.6823), TIM2ef+G for ITS (-lnL=2406.8675), 
and TrN +I+G for LSU (-lnL=2300.4287). Two runs were 
undertaken from a random starting tree for 40 million 
generations, with a sampling frequency of 4000. Tracer 1.6 
[40] was used to check MCMC trace plots. After removed of 
10 % as burn-in, trees files were combined, consensus trees 
were generated (with 0 % burn-in), and the Maximum Clade 
Credibility (MCC) tree was inferred with the higher product 
of individual clade posterior probabilities (pp).

Intra- and interspecific divergence in the ITS and LSU 
regions was calculated using the Compute Pairwise Distances 
function in mega7 [41] with model/method set at ‘No. of 
differences’, gaps/missing data treatment set at ‘pairwise dele-
tion’, and default settings for other parameters. The aligned, 
trimmed ITS sequences of our two ex-CCY 19-21-1T isolates 
and of ex-type strain JCM 8510 were 100 % identical. Isolate 
C4 differed in its ITS in four nucleotides (nt), followed by 
Pseudeurotium zonatum CBS 329.36T=AFTOL-ID 1912T with 
42 nt differences in the ITS. The two ex-CCY 19-21-1T isolates 
also shared 100 % identity in their LSU sequences. The isolate 
from our dataset with least nt differences in the LSU region 
was Thelebolus balaustiformis MUT 2357T (28 nt), followed by 
Leuconeurospora pulcherrima AFTOL-ID 1397 (29 nt), and 
Cleistothelebolus nipigonensis CBS 778.70T and Pseudeurotium 
zonatum CBS 329.36T (both 30 nt).

The phylogenetic reconstruction of Thelebolales based on the 
concatenated three-locus dataset is shown in Fig. 1. Crinula 
caliciiformis and Holwaya mucida (Leotiomycetes incertae 
sedis) were chosen as outgroup taxa. All included genera 
except Ramgea were placed in either Pseudeurotiaceae or 
Thelebolaceae as currently accepted [42–44]. In our three-
locus phylogenetic reconstruction, Ramgea ozimecii CNF 
2/9997T was retrieved as the earliest diverging clade in the 
order with maximum support, resulting in a paraphyletic 
family Thelebolaceae. Inopinatum lactosum gen. and comb. 

nov. was maximally supported as sister to other members of 
Thelebolaceae.

Leotiomycetes are a diverse class within subphylum Pezizo-
mycotina [44, 45] comprising ca. 6500 described species in 
630 genera. These fungi are often found as major components 
of environmental samples. Nonetheless, many taxa remain 
unnamed or incertae sedis within the class. Leotiomycetes 
species appear to be predominantly saprotrophic and para-
sitic, including economically and ecologically important 
pathogens such as the powdery mildews (Erysiphaceae) and 
the causal agent of white-nose syndrome in bats (Pseudogym-
noascus destructans, only known from its asexual morph) 
[43, 44]. Other species, however, are mycorrhizal mutualists 
(ectomycorrhizae and ericoid mycorrhizae) and plant endo-
phytes [46–49].

Ascomycetous yeasts and yeast-like taxa are primarily found 
in the subphyla Saccharomycotina (Saccharomycetes) and 
Taphrinomycotina (Neolectomycetes, Pneumocystomycetes, 
Schizosaccharomycetes, Taphrinomycetes) [24], but have also 
been revealed in other lineages: Arthoniomycetes, Dothideomy-
cetes, Eurotiomycetes, Xylonomycetes (subphylum Pezizomy-
cotina), and Gemmulina (Ascomycota incertae sedis) [50–56]. 
Only recently, the black yeast genus Phaeococcomyces was placed 
in a newly erected order Lichenostigmatales (Arthoniomycetes) 
along with taxa forming colonies of stromatic ascomata or 
conidiomata (Etayoa, Lichenostigma)—a lineage that is unique 
within this class, which is otherwise composed primarily of 
lichenized species [51].

Inopinatum lactosum is the first described yeast-like fungus in 
Leotiomycetes, adding to the body of work that is expanding 
the known morphological and ecological diversity in the class. 
For example, the perithecioid apothecial Annabella australiensis 
(Leotiomycetes, Cordieritidaceae) was recently discovered from 
mangrove wood [57], a habitat that is otherwise mostly popu-
lated by Dothideomycetes and Sordariomycetes [58]. Inopi-
natum is placed in Thelebolaceae. This family includes many 
coprophilic and psychrophilic species [59–62] and, based on 

Fig. 2. Inopinatum lactosum gen. and comb. nov. Strain C4 from [64], growth on PDA supplemented with chloramphenicol (100 mg l−1) 
and ampicillin (100 mg l−1), after incubation of 5–7 days. (a) Colony, with (b) detail of colony with thick and ‘veiny’ undulating margin. (c) 
Vegetative cells, arrow pointing at daughter blastoconidium connected to its mother cell. Bar, 10 µm.
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genomic-scale data, was recently determined to be the sister to 
Pseudeurotiaceae—the order that contains the asexual fungus 
P. destructans [44, 63]. Although little is known of the ecology 
of I. lactosum, a coprophilous habit is likely given its isolation 
from animal faeces [64] and petrochemical wastewater [23].

Inopinatum lactosum is represented in NCBI GenBank by SSU, 
ITS, and LSU sequences of two ex-CCY 19-21-1T isolates (this 
study); SSU, ITS, LSU, and cytochrome b (cytb) sequences of 
strain JCM 8510 (unpublished data); and an ITS sequence 
of isolate C4 [64], which shares 99.01 % identity with the 
ex-type sequences. The C4 isolate was screened for produc-
tion of enzymes on agar plates containing different substrates. 
Protease, amylase, mannanase, and variable xylanase activity 
was observed at 25 °C, while at 15 °C and 39 °C all enzymatic 
activity was either variable or absent [64].

DESCRIPTION OF INOPINATUM HAELEW. & 
AIME, GEN. NOV.
Inopinatum (Latin, meaning ‘unexpected’ and referring to the 
unexpected placement of this pink yeast genus in Leotiomy-
cetes) MycoBank number: MB835917.

Type species: Inopinatum lactosum (E. Sláviková and 
Grab.-Łon.) Haelew. and Aime

Description: Yeast-like fungi belonging to Theobolaceae 
(Theobolales, Leotiomycetes). Teleomorph unknown. Anamorph 
pink-pigmented, forming pseudohyphae and hyphae; blastoco-
nidia bilaterally symmetrical; no known fermentation. Isolated 
from animal faeces and wastewater.

Inopinatum lactosum (E. Sláviková and Grab.-Łon.) Haelew. 
and Aime, comb. nov. MycoBank number: MB835918. Fig. 2.

Basionym: Sporobolomyces lactosus E. Sláviková and 
Grab.-Łon., Anton Leeuw 61 (3): 246 (1992).

Inopinatum lactosum forms pink, glistening, ropey colonies 
on PDA (Fig. 2a). The colony margin is coarsely fimbriate, 
with a ‘veiny’ appearance (Fig. 2b) reminiscent of growth of 
some Aureobasidium Viala and G. Boyer and Kabatiella Bubák 
species in culture [65, 66]. Whereas Aureobasidium cultures 
become black with time, I. lactosum retains its pink pigemen-
tation (Fig. 2a). Growth is dimorphic, producing short chains 
of pseudohyphae and a few true hyphae near margins, and 
blastoconidia from older growth in the center (Fig. 2c). CCY 
19-21-1T, the holotype strain of I. lactosum, was isolated from 
an activated sludge in Poland [23]. The conidia were described 
as ballistoconidia in the protologue but are blastoconidia [67], 
analogous to Aureobasidium [68]. The C4 strain was isolated 
from koala faeces [64], a habitat that is consistent with that 
of other members of Thelebolaceae that are mainly known 
from dung [59].

The holotype is CCY 19-21-1, from petrochemical waste-
water in Warsaw, Poland, and is permanently preserved in 
a metabolically inactive state in the Culture Collection of 
Yeasts, Bratislava, Slovakia. Ex-type cultures are preserved 
as JCM 8510 and JCM 10082 in the Japan Collection of 

Microorganisms, Tsukuba, Japan; and as NCYC 2618 in the 
National Collection of Yeast Cultures, Norwich, UK.
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