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Abstract
Species delimitation is one of the most fundamental processes in biology. Biodiversity undertakings, for instance, require 
explicit species concepts and criteria for species delimitation in order to be relevant and translatable. However, a perfect 
species concept does not exist for Fungi. Here, we review the species concepts commonly used in Basidiomycota, the second 
largest phylum of Fungi that contains some of the best known species of mushrooms, rusts, smuts, and jelly fungi. In general, 
best practice is to delimitate species, publish new taxa, and conduct taxonomic revisions based on as many independent lines 
of evidence as possible, that is, by applying a so-called unifying (or integrative) conceptual framework. However, the types 
of data used vary considerably from group to group. For this reason we discuss the different classes of Basidiomycota, and 
for each provide: (i) a general introduction with difficulties faced in species recognition, (ii) species concepts and methods 
for species delimitation, and (iii) community recommendations and conclusions.
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Introduction

What is a species? This is one of the most fundamental 
questions in biology. Species are the basic units in biology, 
and can be defined as “separately evolving metapopulation 
lineages” as per de Queiroz (2007). Species are the way in 
which we categorize discrete and meaningful groups. Spe-
cies concepts, in contrast to species, are the criteria used to 
delimit species. The pros and cons of different species con-
cepts have been debated in numerous biological disciplines 
ranging from evolutionary biology to systematics and tax-
onomy. Numerous characteristics (or properties) displayed 
by organisms allow us to study species boundaries (i.e., the 
practical delimitation of species); species concepts such as 
the biological, morphological, ecological, and phylogenetic 
species concepts, should be regarded as ways to delimit spe-
cies by placing emphasis on different criteria. At least 32 dif-
ferent species concepts have been identified (Mayden 1997; 
Wilkins 2009; Zachos 2016). Species concepts for Fungi 
have been recently reviewed in Lücking et al. (2020).
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Although species are defined as separately evolving 
units, it is pertinent to point out that “plain” lineages are 
not always accepted as species, neither by some authors 
who explicitly stated so (e.g., Freudenstein et al. 2017) nor 
by the majority of researchers when some clear examples 
of single species with structured populations are presented 
(e.g., Jackson et al. 2017). The “separate and unitary evo-
lutionary role and tendencies” from Simpson’s (1951) 
definition, and the “role” emphasized by Freudenstein 
et al. (2017) thus are essential in our definition of species, 
despite often being difficult to apply in practice. Further, 
since evolution is continuous, it is inevitable to find bor-
derline situations where phylogeographically structured 
populations of a single variable species and true recently 
diverged species may pose challenges to be distinguished 
(Huang 2020). And finally, some diversification patterns 
have been explained by an ephemeral speciation model, 
the idea being that incipient forms appear continuously 
within species but they rarely persist (Rosenblum et al. 
2012).

Species delimitation criteria commonly used 
in Basidiomycota

The phenotype—understood as the set of morphological, 
anatomical, and biochemical traits, and even behavioral fea-
tures and autoecology (Lücking et al. 2020)—is a highly 
complex expression of the genotype in a given environment 
(including epigenetic changes). The earliest species concepts 
in Fungi were based on the phenotype, mostly morphology 
(Micheli 1729; Linnaeus 1753; Persoon 1801; Fries 1821, 
1829). In other words, organisms with different phenotypes 
were delimited as different species (Cronquist 1978). The 
phenotype provides a rich source of qualitative and quan-
titative characters to recognize species, although analytical 
approaches are uncommon in Basidiomycota beyond the 
direct comparison of descriptive traits (Zamora et al. 2015). 
However, there are a number of problems with this species 
concept in Fungi. First, phenotypes may exhibit a variable 
extent of plasticity, which makes it untenable for this crite-
rion to be used as the only one in species delimitation and 
recognition. Second, many fungal organisms, especially sin-
gle-celled taxa such as the yeasts, typically display a limited 
set of taxonomically useful morphological characters, due to 
their relative simplicity (Boekhout et al. 2021). In addition, 
their rate of morphological change is slower (Taylor et al. 
2006a, b).

It could be argued that more in-depth studies lead to 
unearthing subtler albeit more reliable characters for spe-
cies delimitation, but a negative relationship was suggested 
between the number of studied specimens and clear species 
boundaries by Yao and Li (2016). The main limitation of 

a phenotype-based species delimitation is the existence of 
morphologically close species, of which intra- and inter-
specific variation amply overlap regarding some characters 
that have been traditionally used to separate taxa. These spe-
cies are referred to as “cryptic”, a concept that was already 
mentioned by Mayr (1942) as “sibling species”. Nowadays, 
there is a tendency of distinguishing a number of related 
concepts, often following Mann and Evans (2007), such as 
(i) pseudocryptic species, which do have reliable morpho-
logical differences but are so similar that they are often dif-
ficult to be identified; (ii) semicryptic species, which can be 
recognized only if other phenotype-related characters, such 
as ecology and distribution, are also used; and (iii) strictly 
cryptic species that are truly indistinguishable based on mor-
phological traits. It is hardly imaginable, although debatable, 
that truly cryptic species could exist, but in practice some 
may be effectively indistinguishable based on the pheno-
typic characters studied so far. This problem is well-known 
in some groups of Basidiomycota, and one of the classic 
examples is the morphospecies Armillaria mellea (sensu 
lato), which contains over a dozen species as determined by 
mating tests (Hintikka 1973; Anderson and Ullrich 1979; 
Men et al. 2016).

Reproductive isolation is often used to delimit fungal 
species. Eriksson (1950) was the first to perform interfertil-
ity tests in corticioid fungi, followed by, e.g., Hallenberg 
(1983a, 1988) and Hallenberg et al. (1996). In Agaricales, 
this approach has been relatively common, and potential 
reproductively isolated species have been detected in many 
groups (Boidin 1986; Lamoure 1989; Petersen 1995a, b; 
Aanen and Kuyper 1999, 2004). Heterobasidion (Russu-
lales) is another example of a genus in which biological 
species recognition has been applied when morphologi-
cal characters do not support separation of species (Nie-
melä and Korhonen 1998). However, in vitro experiments 
have indicated that Heterobasidion species retain between 
5 and 98% interfertility, depending on the species com-
binations (Garbelotto and Gonthier 2013). Hybridization 
processes in nature have also been repeatedly documented 
to occur between pairs of taxa within the H. annosum spe-
cies complex (Garbelotto and Gonthier 2013; Sedlák and 
Tomšovský 2014; Sillo et al. 2019). Both hybridization and 
genetic isolation happen in pathogenic yeasts of the genus 
Cryptococcus (Boekhout et al. 2021). Some other stud-
ies have suggested hybridization to occur in other groups, 
for example Malassezia (Theelen et al. 2004; Wu et al. 
2015) and other members of Ustilaginomycotina (Kellner 
et al. 2011). There are some limitations in using inter-
compatibility tests (Hallenberg 1987): (i) uniparental or 
homothallic species are excluded, limiting the number of 
studied species; (ii) the number of available cultures from 
geographically distinct locations and different substrates 
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is restricted; (iii) the results are not easily interpreted and 
negative mating tests may not always imply that two spe-
cies belong to different compatibility groups; and (iv) inter-
compatibility as proof of conspecifity is to some extent 
artificial. Another limitation is that fungi of specialized 
ecological guilds, such as ectomycorrhizal (ECM) taxa, 
are often not culturable.

The use of genealogies or phylogenies to study species 
delimitation is also relatively old. Eldredge and Cracraft 
(1980) and Cracraft (1983) focused species recognition on 
this criterion, defining species as “the smallest diagnos-
able cluster of individual organisms within which there is 
a parental pattern of ancestry and descent”. Phylogenies 
can be inferred using a variety of characters, including 
phenotypic data and DNA characters, or a combination of 
both. Since one of the main characteristics of speciation 
events is the interruption of the gene flow among groups 
of individuals (Coyne and Orr 2004), it should be possible 
to assess species boundaries by analyzing the genetics of 
the organisms involved. The simplest of the DNA-based 
methods aimed at delimiting species is barcoding, which 
consists of the use of one or few short DNA regions with 
low intra-specific variation and high inter-specific varia-
tion (Hebert et al. 2003). The most frequently used region 
for barcoding purposes in fungi is the internal transcribed 
spacer (ITS) region of the nuclear ribosomal DNA (Schoch 
et al. 2012), although other regions may be selected as sec-
ondary or alternative barcodes (Stielow et al. 2015). DNA 
barcoding, however, is unreliable for species recognition 
in a number of taxa—including Crepidotus, Hohenbue-
helia, Laccaria, Mucidula, and Phaeocollybia (Badotti 
et al. 2017), the Hypholoma fasciculare complex (Sato 
et al. 2020), Mycena sect. Calodontes (Harder et al. 2013), 
and Pluteus sect. Pluteus (Justo et al. 2014). It is therefore 
better regarded as a tool for helping with species identi-
fication rather than for species descriptions. Even when 
proper species delimitation analyses are applied to single-
locus phylogenies, e.g., by using GMYC (Pons et al. 2006) 
or PTP (Zhang et al. 2015), qualities such as paralogy 
(including the presence of several unconcerted copies in 
multicopy regions; Aime et al. 2017), lack of variation 
in recent radiations, recombination, incomplete lineage 
sorting, hybridization, horizontal gene transfer, et cetera 
(Dupuis et al. 2012; Zamora et al. 2018) all negatively 
affect the accuracy of analyses and, thus, the reliability 
of the results.

Genealogical Concordance Phylogenetic Species Recog-
nition (GCPSR) was proposed by Taylor et al. (2000) as a 
more advanced approach for species delimitation. It relies 
on the use of several unlinked DNA regions (recombination 
should not occur within a region) to build up single-region 
phylogenies, of which tree topology concordance is then 
assessed. Species are considered the minimum units above 

which there are no incongruences among single-locus phy-
logenies. Below the level of species, intra-specific incon-
gruences among the genetic information contained in the 
loci are expected as a result of recombination among indi-
viduals. This approach unfortunately does not account for 
any of the many situations that lead to incongruences even 
among well-defined species, such as the presence of shared 
ancestral polymorphisms, introgression, hybridization, et 
cetera. In these cases, if strictly applied, GCPSR could 
undersplit species so severely that higher-level taxa with 
well-known problems of incongruences among loci would 
fall into the definition of a single species (e.g., Cantharel-
lales; Moncalvo et al. 2006). This may look as an extreme 
example that no taxonomist would accept, but incongru-
ences among phylogenies tend to become more common 
in closely related species (e.g., due to deep coalescence), 
which are precisely the targets of most species delimitation 
analyses. On the other hand, this method is prone to over-
splitting in cases where structured populations are present, 
since tree topologies of a few loci likely agree following a 
phylogeographical pattern.

Finally, coalescence-based species delimitation 
analyses are among the most powerful methods based 
on phylogenetic data, implemented in software such as 
SpedeSTEM (Ence and Carstens 2011), BP&P (Yang and 
Rannala 2014), and STACEY (Jones 2017). Here, species 
boundaries are inferred not directly based on single-locus 
trees, but using an estimated species tree that accounts for 
incongruences caused by the presence of shared ancestral 
polymorphisms (incomplete lineage sorting). These analy-
ses have become more standard in mycology, although 
the number of studies using them in Basidiomycota is 
still low (e.g., Svantesson et al. 2019; Zamora and Ekman 
2020). Given enough variation in the data, these methods 
are prone to oversplitting. It has been demonstrated that 
they can treat structured populations as species (Suku-
maran and Knowles 2017) because they detect population 
rather than species splits (Leaché et al. 2019). In addition, 
coalescence analyses are unappropriate in cases of reticu-
late evolution, including hybridization, introgression, and 
horizontal gene transfer, since those situations violate the 
assumptions of the model. The multispecies network coa-
lescent (Yu et al. 2014) has been developed to deal with 
these situations, inferring species networks instead of 
dichotomous phylogenies, although how to translate the 
output to putative species may still be challenging. On 
the other hand, the use of hundreds or thousands of loci 
obtained through next-generation sequencing (NGS) and 
good analytical pipelines could also overcome some of the 
aforementioned problems.

All species delimitation approaches have strengths and 
shortcomings, and there is not a single method able to relia-
bly identify all species (Carstens et al. 2013). Regarding this, 
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it is important to remember that the output of any of these 
analyses are not “species”, but “candidate” or “putative” 
species or lineages, which should be critically evaluated 
in light of available data before proposing taxonomic treat-
ments. Therefore, approaches combining as many taxonomic 
sources of information as possible, i.e., an integrative (or 
polyphasic) taxonomy approach (Dayrat 2005), account for 
most accuracy. In this paper, we discuss species delimitation 
within Basidiomycota by higher taxonomic group (sensu He 
et al. 2019; Wijayawardene et al. 2020) and present for each 
a review of methods for species delimitation and community 
recommendations for future work on this subject.

Subphylum Agaricomycotina

Species delimitation in Agaricomycetes

Agaricomycetes (~ 30,143 species) encompasses the major-
ity of described species in Basidiomycota and includes 22 
orders, 128 families, and 1434 genera (He et al. 2019). In 
Agaricomycetes, the pileate-stipitate morphotype is domi-
nant, along with the coralloid, polyporoid, corticioid, gas-
teroid, and other forms, and the group includes saprotrophs, 
pathogens, and mutualists (Hibbett et al. 2014). Sánchez-
García et al. (2020) highlighted that morphological transi-
tions, not nutritional modes, are the most important drivers 
of diversification across Agaricomycetes and that lineages 
with pileate-stipitate basidiomata have strongly increased 
diversification rates across all clades. As a result of the com-
plexity of morphological and ecological diversity, there are 
many difficulties in the delimitation of Agaricomycetes spe-
cies. Regarding DNA-based molecular methods, ITS is still 
the most widely used region for identifying species within 
Agaricomycetes. There is an increasing tendency to com-
bine multiple loci with the ITS region (Stielow et al. 2015; 
Tekpinar and Kalmer 2019). The most comprehensive phy-
logenetic analyses of Agaricomycetes so far were a multilo-
cus and genomic-scale data-based phylogeny of 5284 taxa 
(Varga et al. 2019) and a five-locus analysis of 8472 taxa 
(Sánchez-García et al. 2020). Given the extreme diversity 
contained within Agaricomycetes, we will introduce prac-
tices regarding species delimitation for higher clades within 
the class.

Species delimitation in Agaricales

The order Agaricales, typified with the genus Agaricus, 
encompasses most of the so-called mushrooms and toad-
stools and is one of the best studied and conspicuous 

morphologically varied assemblage of Agaricomycetes 
(Singer 1986; Hibbett et al. 1997, 2014; Hibbett 2007; Zhao 
et al. 2008; Kalichman et al. 2020). Agaricales is by far the 
largest and diverse order in Fungi with 23,225 described spe-
cies (Kirk 2019) distributed in 46 families and 509 genera 
(Kalichman et al. 2020). Agaricales is also the fungal order 
with most species described in recent years (Cheek et al. 
2020). In addition, Agaricales is one of the youngest orders 
in Basidiomycota, with recent estimates dating the origin of 
this order between 135 and 173 million years ago (He et al. 
2019; Varga et al. 2019; Sánchez-García et al. 2020). Most 
Agaricales are saprotrophic or form mutualistic symbioses 
with a great variety of vascular plants (ectomycorrhizae). 
Others are plant pathogens, facultative human pathogens 
(e.g., Schizophyllum commune), fungal pathogens (e.g., Rho-
dophana stangliana, Squamanita spp.), predators on nema-
todes (e.g., Hohenbuehelia, Pleurotus), and—mainly in the 
tropics—symbiotic partners of green algae, cyanobacteria, 
and insects. Although less common, Agaricales species are 
also found in freshwater, marine, and mangrove habitats.

In terms of basidiomata, the pileate-stipitate forms with 
lamellate (gilled) hymenophores are dominant (343 genera, 
accounting for 67% of total generic diversity), along with 
the secotioid and gasteroid sequestrate forms, including 
false truffles, puffballs, and bird’s nest fungi and, to a lesser 
extent, resupinate, clavarioid, cyphelloid, and pileate with 
poroid hymenophores (Zhao et al. 2008; Hibbett et al. 2014; 
Kalichman et al. 2020; Põlme et al. 2020). Molecular studies 
have revealed that characters such as basidioma formation 
and habit, hymenophore type, and color of spore-print were 
traditionally overemphasized (Singer 1986; Horak 2005) 
and are not reliable phylogenetic markers at higher taxo-
nomic level, having resulted in many artificial groups (Hib-
bett et al. 1997; Hibbett 2007, 2014; He et al. 2019; Varga 
et al. 2019; Sánchez-García et al. 2020). While some non-
gilled resupinate, cyphelloid, aphyllophoralean, and gaster-
oid fungi should be included in Agaricales (Hibbett et al. 
1997; Bodensteiner et al. 2004; Binder et al. 2005, 2010; 
Matheny et al. 2006a, b; Sulistyo et al. 2021), the opposite 
is also true—some typical pileate-stipitate gilled mushroom 
occur in other orders of Agaricomycetes: Lactifluus, Lac-
tarius, Lentinellus, Multifurca, and Russula in Russulales 
(Miller et al. 2006; Buyck et al. 2008); Erytrophylloporus, 
Hygrophoropsis, Paxillus, Phylloporopsis, Phylloporus, 
and Tapinella in Boletales (Binder and Hibbett 2006; Farid 
et al. 2018; Vadthanarat et al. 2019b); and Contumyces, 
Gyroflexus, and Rickenella in Hymenochaetales (Larsson 
et al. 2006). Automated searches of the NCBI GenBank and 
MycoCosm databases by Kalichman et al. (2020) found that 
7% of generic names of Agaricales had DNA sequences of 
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their type specimens, 68% had sequences of their type spe-
cies, 87% of genera were represented by sequences (non-
type), and 103 accepted genera lacked sequence data.

Species concepts and species recognition

Species identification in Agaricales has traditionally relied 
on morphological characters (e.g., Singer 1986; Bas et al. 
1988; Horak 2005; Knudsen and Vesterholt 2008) that are 
known to be subject to parallel evolution and phenotypic 
plasticity (Slepecky and Starmer 2009). In many cases, sepa-
ration of species based on morphology alone is challenging 
and many taxa represent complexes with (pseudo)cryptic 
species (Geml et al. 2006; Bickford et al. 2007; Carriconde 
et al. 2008; Stefani et al. 2014; Balasundaram et al. 2015; 
Guo et al. 2016; Sánchez-García et al. 2016; Li et al. 2017; 
Peintner et al. 2019; Vizzini et al. 2019a, b; Nilsen et al. 
2020; Sato et al. 2020; Voitk et al. 2020). Putative interspe-
cific hybridization events have been suggested to occur in 
some Agaricales (Aanen et al. 2000; Hughes et al. 2013).

Mycelial compatibility groups studies have been used 
for species delimitation (Lamoure 1974, 1989; Boidin 
1980, 1986; Petersen 1995a, b; Petersen et al. 1999) within 
various saprotrophic and ECM genera, such as Agrocybe, 
Armillaria, Coprinus, Flammulina, Gymnopus, Hebeloma, 
Hypholoma, Laccaria, Lentinula, Marasmius, Marasmiellus, 
Omphalina, Omphalotus, Pholiota, Pleurotus, Psathyrella, 
Stropharia, alone or usually coupled to morphological (phe-
notypic) and/or molecular analysis (e.g., Lamoure 1974, 
1989; Kemp 1975; Romagnesi 1975, 1982; Korhonen 1978; 
Anderson et al. 1980; Guillamin and Berthelay 1981; Vil-
galys and Miller 1983, 1987; Jacobsson 1986, 1987, 1989, 
1990; Jahnke et al. 1988; Flynn and Miller 1990; Mueller 
1991; Mueller and Gardes 1991; Vilgalys 1991; Petersen 
1992, 1995a, b; Petersen and Hughes 1993, 1998; Murphy 
1997; Petersen et al. 1999; Aanen and Kuyper 1999, 2004; 
Nicholl and Petersen 2000; Zervakis et al. 2004; Mata et al. 
2004; Lechner et al. 2005; Qin et al. 2007; Wannathes et al. 
2007; Uhart and Albertó 2009; Ravash et al. 2010). Culture 
studies have proved useful for delimiting taxa in Lyophyllum 
sect. Difformia (Moncalvo et al. 1993).

The study of the number of nuclei present inside the 
basidiospores has proved useful to discriminate species in 
Hygrocybe and Lepiota (Kühner 1980; Vellinga and Huijser 
1998; Vizzini et al. 2014a, b). Isozyme analysis is rather 
efficient for determining variation in fungi (Micales et al. 
1986; Bonde et al. 1993) and has been widely used in the 
identification of species in some genera of Agaricales, such 
as Armillaria (Wahlström et al. 1991; Agustian et al. 1994), 
Flammulina (Alekhina et al. 2001), and Pleurotus (Magae 
et al. 1990; Zervakis and Labarere 1992; Zervakis et al. 
1994, 2001). A rapid methodology for the identification of 

Agaricales via protein profiling based on matrix-assisted 
laser desorption/ionization mass spectrometry (MALDI-
TOF MS) was proposed by Sugawara et al. (2016). Zerva-
kis et al. (2012) successfully applied the Fourier transform 
infrared (FT-IR) spectroscopy for taxa delimitation within 
the genus Pleurotus.

Non-sequence-based molecular methods have been 
used alone or in support of molecular analyses, including 
DNA–DNA hybridization (reassociation) (Jahnke 1985, 
1987; Jahnke and Bahnweg 1986; Jahnke et al. 1987, 1988), 
DNA profiling techniques, e.g., restriction fragment length 
polymorphism (RFLP) (Castle et al. 1987; Smith and Ander-
son 1989; Gardes et al. 1990; Mueller and Gardes 1991; 
Bunyard et al. 1996; Anderson et al. 1998; Methven et al. 
2000; Hughes et al. 2001; Urbanelli et al. 2007; Carriconde 
et al. 2008; Meza-Meneses et al. 2016; Kondo et al. 2017), 
amplified fragment length polymorphism (AFLP) (Lee et al. 
2000; Kim et al. 2006; Urbanelli et al. 2007; Ota et al. 2012), 
random amplified polymorphic DNA (RAPD) (Hsiang and 
Wu 2000; Zervakis et al. 2001; Stott et al. 2005; Alam et al. 
2010), cleaved amplified polymorphic sequences (CAPS) 
(Stott et al. 2005), and analyses of SSRs/microsatellites 
(Carriconde et al. 2008; Vincenot et al. 2017; Wang et al. 
2018).

Regarding sequence-based molecular methods, ITS is still 
the most widely used marker for species identification within 
Agaricales (Badotti et al. 2017; Yang et al. 2018; Vu et al. 
2019; Kalichman et al. 2020). It is quite easy to amplify 
and sequence, even from old specimens—up to 200 years 
old (Larsson and Jacobsson, 2004; Liimatainen et al. 2014, 
2020; Nilsen et al. 2020). ITS has been found to be a suitable 
barcode for some groups in the Agaricales, including the 
genera Amanita (e.g., Vizzini et al. 2016b; Cui et al. 2018; 
Saba et al. 2019; Hanss and Moreau 2020), Cortinarius (e.g., 
Frøslev et al. 2005, 2007, 2017; Liimatainen et al. 2014, 
2020; Stefani et al. 2014; Garnica et al. 2016; Nilsen et al. 
2020), Entoloma (Dima et al. 2021), Gymnopilus (Thorn 
et al. 2020), Hebeloma (Eberhardt et al. 2013), Lepista 
(Wang et al. 2019), Marasmius (Shay et al. 2017; Haelewa-
ters et al. 2020a), Melanoleuca (Vizzini et al. 2011; Antonín 
et al. 2014, 2015, 2017), Tricholoma (Jargeat et al. 2010; 
Heilmann-Clausen et al. 2017), Tricholomopsis (Holec and 
Kolařík 2012; Cooper and Park 2016), and the families Aga-
ricaceae (Justo et al. 2015; Vizzini et al. 2014a, b, 2019a, b), 
Lyophyllaceae (Bellanger et al. 2015), and Hygrophoraceae 
(Ainsworth et al. 2013; Lodge et al. 2014; Lücking et al. 
2017; Larsson et al. 2018; Voitk et al. 2020). On the other 
hand, ITS-based phylogenies have low resolution for spe-
cies recognition in Crepidotus, Hohenbuehelia, Laccaria, 
Mucidula, and Phaeocollybia (Badotti et  al. 2017), the 
Hypholoma fasciculare complex (Sato et al. 2020), Mycena 
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sect. Calodontes (Harder et al. 2013), and Pluteus sect. Plu-
teus (Justo et al. 2014).

There is a general tendency towards combining multi-
ple loci with the ITS region (Stielow et al. 2015; Tekpinar 
and Kalmer 2019; Lücking et al. 2020). Other loci used in 
Agaricales for combined analyses include the intergenic 
spacer region (IGS) (Liang et al. 2011; Wang et al. 2019), 
nuclear small and large subunit rRNA genes (SSU, LSU) 
(e.g., Sánchez-García et al. 2016; Vizzini et al. 2015, 2020; 
Oliveira et al. 2019; Saba et al. 2019, 2020; Varga et al. 
2019), mitochondrial SSU (mtSSU) (e.g., Liang et al. 2011; 
Eberhardt et al. 2013; Grilli et al. 2016; Wang et al. 2019; 
Saba et  al. 2020), mitochondrial ATP synthase protein 
subunit 6 (atp6) (Robison et al. 2001; Kluting et al. 2014; 
Baroni et al. 2020; Jian et al. 2020), cytochrome oxidase 1 
mitochondrial gene (cox1) (Damon et al. 2010; Dentinger 
et al. 2011), the largest and second largest subunits of RNA 
polymerase II (rpb1 and rpb2, respectively) (e.g., Frøslev 
et al. 2005; Harder et al. 2013; Qin et al. 2014; Antonín et al. 
2015, 2017; Cui et al. 2018; Wang et al. 2018; Baroni et al. 
2020; Olariaga et al. 2020; Mešić et al. 2021), translation 
elongation factor 1-α (tef1) (e.g., Jargeat et al. 2010; Ota 
et al. 2012; Harder et al. 2013; Justo et al. 2014; Wang et al. 
2019; Corrales et al. 2020; Vizzini et al. 2020), β-tubulin 
(btub) (e.g., Geml et al. 2006; Nagy et al. 2012; Qin and 
Yang 2016; Cui et al. 2018; Fraiture et al. 2019), glyceral-
dehyde-3-phosphate dehydrogenase (gpd) (Nuytinck et al. 
2007; Ota et al. 2012; Stefani et al. 2014), a macroevolu-
tionary genomic marker specific to Basidiomycota (megB1) 
(Babasaki et al. 2007; Ota et al. 2012), nitrate reductase 
(nar), glucose-6-phosphate dehydrogenase (g6pd) (Vincenot 
et al. 2012), and the gene coding for the Minichromosome 
Maintenance Complex Component 7 (Mcm7) (Eberhardt 
et al. 2013; Stefani et al. 2014). Finally, for species delimita-
tion in Flammulina, Wang et al. (2018) used homeodomain1 
of the mating gene (HD1-A).

In addition, incorporation of secondary structural infor-
mation of ribosomal sequences in phylogenetic analysis 
has been shown to increase the accuracy and robustness of 
phylogenies (Landis and Gargas 2007; Ahvenniemi et al. 
2009; Zhang et al. 2015; Yang et al. 2018; Sundaresan et al. 
2019). In particular, exploring the secondary structure of 
the ITS2 spacer region for Tricholoma (Suk and Kim 2002) 
and “Lycoperdaceae” (Krüger and Gargas 2008), and of 
mtSSU for Agrocybe (Gonzalez and Labarère 1998; Uhart 
et al. 2007), and Pleurotus (Gonzalez and Labarère 2000) 
has been a promising approach in species delimitation.

Conclusion and recommendations

ITS remains an important barcode marker to delimit spe-
cies. In many groups of Agaricales, ITS may be sufficient 

to discriminate among species, whereas other (cryptic) taxa 
require secondary barcoding markers or multilocus analy-
ses. Besides ITS, the most employed markers are LSU, 
rpb1, rpb2, tef1, btub, and atp6. An integrative taxonomy 
approach is strongly encouraged for species delimitation in 
Agaricales. A prime example is that by Lodge et al. (2014) 
on Hygrophoraceae, in which multilocus phylogenetic data 
are integrated with information from morphology, pigment 
chemistry, and ecology. Finally, sequencing of old her-
barium type specimens (even over 100 years of age) with 
Sanger or next-generation sequencing approaches has proven 
feasible in members of Ascomycota and Russulales (e.g., 
Forin et al. 2018, 2020; Delgat et al. 2019; Kistenich et al. 
2019; Gómez-Zapata et al. 2021) and should be attempted 
in Agaricales.

Species delimitation in Amylocorticiales

Amylocorticiales is a small order with about fifty species 
distributed in ten genera (Binder et al. 2010; He et al. 2019), 
including mostly resupinate forms such as Amylocorticiel-
lum, Amylocorticium, Amyloxenasma, Ceraceomyces, and 
Serpulomyces, but there is considerable morphological 
diversification within the group. Non-resupinate members 
include the ‘pagoda fungus’, Podoserpula pusio, which has a 
multi-tiered pileate-stipitate form; and sister taxa Irpicodon 
pendulus and Plicaturopsis crispa, which are pileate-sessile. 
Plicaturopsis and Podoserpula both have merulioid hymeno-
phores; Irpicodon has an irregularly hydnoid hymenophore; 
and Anomoloma and Anomoporia have poroid hymeno-
phores. All species in Amylocorticiales have a monomitic 
hyphal system with clamped hyphae and a thickening 
hymenium. Basidiospores are invariably smooth, allantoid, 
cylindrical or ellipsoid with thin to thickened spore walls; 
most corticioid species have amyloid spore walls. Cystidia 
are not common and when present, they are simple, tube-
like, sometimes septate. Amylocorticiales was identified 
as an independent group within Agaricomycotina by Lars-
son (2007) but only recognized as an order by Binder et al. 
(2010). Most species of the Amylocorticiales are thought 
to be saprotrophic and occur on wood at various stages of 
decay, mostly causing a brown rot. There is diversity in the 
mode of decay, however.

Species concepts and species recognition

Usually, species of corticioid fungi have been delimited 
based mainly on morphology and chemical reactions of 
hyphae and basidiospores, but also using substrate prefer-
ence information, and compatibility mating tests. Among 
the resupinate forms of Amylocorticiales, which share a 
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monomitic hyphal system and usually lack cystidial ele-
ments, basidiospore thickness and reactions to iodine are 
useful characters (Eriksson and Ryvarden 1973; Zmitrovich 
and Spirin 2002; Bernicchia and Gorjón 2010; Gorjón et al. 
2011).

Because morphological characters are limited, molecular 
phylogeny and phylogenomics are often employed to eluci-
date species and species complexes. Few recent phylogenetic 
studies deal with Amylocorticiales. Song et al. (2016) stud-
ied phylogenetic relationships of Anomoloma and Anomopo-
ria but the order needs further studies in delimitation of 
(genera and) species.

Conclusion and recommendations

A satisfactory approach to discriminate species of Amylo-
corticiales requires the integration of morphological fea-
tures, biochemical reactions, sequence data, nuclear behav-
ior, mating compatibility, decaying abilities, ecological 
strategies, and host preferences (Larsson 2007; Rajchenberg 
2011). Whereas LSU is the locus of choice for higher taxo-
nomic level relationships, the ITS region should be used for 
the study of genera, species complexes, and species (Larsson 
2007; Nilsson et al. 2008; Song et al. 2016). It may also be 
useful to incorporate tef1 in addition to ITS; tef1 provides 
better resolution in separating species (Carlson et al. 2014; 
Miettinen et al. 2018). The rpb2 gene is more variable than 
tef1 and recovers higher taxonomic clades with support 
(Matheny et al. 2007).

Species delimitation in Atheliales

The order Atheliales comprises five families (Atheliaceae, 
Byssocorticiaceae, Lobuliciaceae, Pilodermataceae, and 
Tylosporaceae), approximately 20 genera, and about 100 
described species of mostly corticioid fungi (Sulistyo et al. 
2021). Over the years, several genera have been described 
and added to Atheliales, based on morphological characters 
alone (Hjortstam and Ryvarden 2010) or combined with 
molecular phylogenetic evidence (Kotiranta et al. 2011). 
Sequence-based studies found some of these genera to be 
polyphyletic, sometimes with members clustering within 
other orders (Hibbett et al. 2007; Ertz et al. 2008; Binder 
et al. 2010; Sulistyo et al. 2021). Members of Atheliales 
are generally inconspicuous and possess few diagnostic fea-
tures, including pellicular basidiomata, thin-walled hyphae 
in a monomitic hyphal system, rarely with cystidia, which, 
if present, are little differentiated (Eriksson and Ryvarden 
1973; Larsson 2007; Bernicchia and Gorjón 2010). Despite 
a simple morphology, members of Atheliales are remark-
ably diverse in their ecological strategies; the order includes 
ECM, white rot saprotrophic, lichenicolous members, and a 
species that is a putative parasite of termites.

Species concepts and species recognition

There are few reliable characters to separate genera and 
species based on morphology alone. Also, most species of 
the largest genus in the order, Athelia (32 species; Wijaya-
wardene et al. 2020), are regarded as siblings—for example, 
species limits within the Athelia epiphylla complex are not 
yet clarified (Eriksson and Ryvarden 1973; Bernicchia and 
Gorjón 2010; Sulistyo et al. 2021). Sulistyo et al. (2021), 
who presented an order-wide multilocus phylogenetic anal-
yses, found a number of genera to be non-monophyletic: 
Amphinema, Athelia, Athelopsis, and Leptosporomyces 
(Sulistyo et al. 2021). Few DNA sequences are available, 
and as a result several of the lower taxonomic taxa are in 
need of revision.

An interesting situation occurs in the family Tylo-
sporaceae. The phylogenically close relationship of Amphin-
ema and Tylospora (sensu Sulistyo et al. 2021) is surprising 
when considering the differences in morphology. Amphin-
ema is the only genus of Atheliales with conspicuous cys-
tidial elements and smooth basidiospores, whereas Tylos-
pora has lobed and ornamented basidiospores. Members of 
the two genera form ECM associations. Both Amphinema 
(Sulistyo et al. 2021) and Tylospora (Tedersoo and Smith 
2013) are non-monophyletic. It is clear from the several 
taxonomic problems highlighted by Sulistyo et al. (2021), 
but also by the low phylogenetic resolution retrieved on key 
nodes was low, that more sampling needs to happen to deci-
pher generic and species limits.

Conclusion and recommendations

Future studies of Atheliales should incorporate sequence 
data for genera of Atheliales sensu lato that were not 
included in the order-wide study by Sulistyo et al. (2021): 
Athelicium, Athelocystis, Butlerelfia, Elaphocephala, 
Hypochniciellum, Melzericium, and Mycostigma. For 
delimitation of genera and species, molecular-based stud-
ies on ITS, LSU, rpb2, and tef1 are necessary. Finally, 
given the remarkable diversity observed in the order, 
Atheliales is a model group to study evolutionary patterns 
of nutritional modes. However, more sampling is needed, 
including from tropical areas, to improve phylogenetic 
resolution.

Species delimitation in Boletales

The order Boletales encompasses species commonly known 
as fleshy pored mushrooms or boletes. They are a globally 
distributed and extraordinarily diverse assemblage with 
about 2173 described species (Kirk 2019) placed in 16 fam-
ilies and 141 genera (He et al. 2019), including the fossil 
genus Palaeogaster (Poinar et al. 2014). The numbers of 
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species and genera are likely to be higher because many 
tropical and subtropical areas are still poorly sampled. The 
majority of the thus far described species taxa (77%) are 
characterized by a pileate-stipitate habit with tubulose hyme-
nophore (Binder et al. 2010; Hibbett et al. 2014). Other spe-
cies have above- or belowground, sequestrate, gilled agari-
coid or pleurotoid, corticioid, or polyporoid habits (Høiland 
1987; Agerer 1999; Binder and Hibbett 2006; Watling 2008; 
Jarosch 2001; Nuhn et al. 2013; Hibbett et al. 2014; Wu et al. 
2014, 2016; He et al. 2019).

Most genera in the Boletales are ECM associates of a 
large variety of conifers (gymnosperms) and broadleaved 
trees (angiosperms) (Newman and Reddell 1987; Binder and 
Hibbett 2006; Rinaldi et al. 2008; Tedersoo et al. 2010). 
Recently, Scleroderma turned out to be a putative orchid 
endomycorrhizal symbiont in Mexico (Gonzáles-Chávez 
et al. 2018). In the case of some gall-forming species belong-
ing to Boletinellaceae (Boletinellus merulioides and Phlebo-
pus spp.), they appear to establish symbiotic relations with 
mealy bugs and aphids (Brundrett and Kendrick 1987; Nuhn 
2016; Fang et al. 2020). A few genera in Boletales may be 
mycoparasitic; Chroogomphus and Gomphidius (Gomphi-
diaceae) are able to parasite rhizomorphs and ectomycor-
rhizae of the closely related Rhizopogon (Rhizopogonaceae) 
and Suillus (Suillaceae) (Miller 1964; Agerer 1990, 1991, 
2006; Olsson et al. 2000); Buchwaldoboletus, Chalciporus, 
and Pseudoboletus (Boletaceae) are parasitic on members of 
other genera of Boletales or other Agaricomycetes (Aman-
ita, Phaeolus schweinitzii, Scleroderma; Binder and Hib-
bett 2006; Nuhn et al. 2013). Few Boletales are saproxylic 
wood-rotting species inhabiting decayed stumps, fallen twigs 
or branches, and dead standing trees preferably of conifers 
and exclusively producing a Coniophoraceae-type brown rot 
(Nilsson and Ginns 1979; Besl et al. 1986; Jarosch 2001). 
Some genera are able to colonize building structures such 
as wooden timber, cottages, and porous bricks (corticioid 
genera as Coniophora, Leucogyrophana, Serpula), which are 
among the most dangerous wood-destroying fungi (Gilbert-
son 1981; Schmidt et al. 2002; Mattsson et al. 2010; Skrede 
et al. 2011; Hyde et al. 2018).

Binder and Hibbett (2006) provided the first compre-
hensive molecular study of Boletales using a combined 
analysis of four loci (5.8S, LSU, mtLSU, atp6). Six clades 
were recognized at the subordinal level: Boletineae, Conio-
phorineae, Paxillineae, Sclerodermatineae, Suillineae, and 
Tapinellineae. Nuhn et al. (2013) analyzed the generic and 
sub-generic relationships in Boletineae; using a combined 
LSU, rpb1, and tef1 dataset, they identified 17 clades within 
four major groups and transferred Paxillaceae to Boletineae. 
Based on the analysis of a combined LSU, rpb1, rpb2, and 
tef1 dataset, Wu et al. (2014) recovered 59 genus-level clades 
in Boletaceae distributed over seven major clades, six out of 
which have been recognized as monophyletic subfamilies: 

Austroboletoideae, Boletoideae, Chalciporoideae, Lec-
cinoideae, Xerocomoideae, and Zangioideae. The seventh 
major clade remained largely unresolved in the analysis and 
was provisionally named as “Pulveroboletus group”.

Species concepts and species recognition

Species identification in Boletales has traditionally relied 
on morphological characters associated to the basidioma 
(e.g., Watling 1970, 2008; Engel 1983; Engel et al. 1983, 
1996; Singer 1986; Watling and Li 1999; Bessette et al. 
2000, 2016; Lannoy and Estadès 2001; Horak 2005, 2011; 
Muñoz 2005; Watling and Hills 2005; Noordeloos et al. 
2018). Mycelial compatibility studies (Fries 1985; Fries and 
Neumann 1990; Sen 1990), cultural data (Hutchinson 1991), 
and isozyme analysis (Sen 1990) have been sometimes used 
for species delimitation. Schmidt and Kallow (2005) used 
MALDI-TOF MS for identification of mycelia of wood-
decay fungi as Coniophora putena, C. marmorata, Serpula 
lacrymans, and S. himantioides. DNA profiling techniques 
have been used alone or combined with sequencing stud-
ies, including RFLP (Bresinsky 1996; Anderson et al. 1998; 
Jasalavich et al. 2000; Hitchcock et al. 2003; Leonardi et al. 
2005; Marques and Muñoz 2006; Sanon et al. 2009; Dunham 
et al. 2013), T-RFLP (Råberg et al. 2005), AFLP (Kause-
rud et al. 2006; Skrede et al. 2012), ARDRA (Schmidt and 
Moreth 1998a, 1999), RAPD (Anderson et al. 1998; Jun-
ghans et al. 1998; Schmidt and Moreth 1998b), and analyses 
of SSRs/microsatellites (Hitchcock et al. 2003; Kretzer et al. 
2003).

Regarding sequence-based molecular methods, ITS is still 
the most widely used marker in species delimitation within 
Boletales (Badotti et al. 2017). ITS is a reliable barcode 
marker for species in several genera, e.g., Astraeus (Phosri 
et al. 2014), Chroogomphus (Scambler et al. 2018; Kiran 
et al. 2020), Phylloporus (Neves et al. 2012), Rhizopogon 
(Sulzbacher et al. 2016), Suillellus (Vizzini et al. 2014c), 
Suillus (Kretzer et al. 1996; Wu et al. 2000; Manian et al. 
2001; Nguyen et al. 2016), Xerocomellus (Frank et al. 2020), 
and Xerocomus (Taylor et al. 2006a, b, 2007), but a poor 
marker in other genera (e.g., Butyriboletus, Pisolithus; Bad-
otti et al. 2017). Some genera in Leccinoideae (Leccinum, 
Octaviania, Rossbeevera and Turmalinea) are characterized 
by a minisatellite-like insertion within the ITS region (den 
Bakker et al. 2004; Orihara et al. 2012). Orihara et al. (2016) 
pointed out that the insertion sequences within the ITS2 
spacer of Rossbeevera and Turmalinea are highly informa-
tive and can be used as a unique molecular barcode.

Cryptic speciation is present in many genera, including 
Astraeus (Phosri et al. 2014), Paxillus (Hedh et al. 2008; 
Jargeat et al. 2014, 2016), Pisolithus (Martin et al. 2002), 
Rhizopogon (Dowie et al. 2017), Serpula (Carlsen et al. 
2011; Balasundaram et al. 2015), and Strobilomyces (Sato 
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et al. 2007). Balasundaram et al. (2015) and Tremble et al. 
(2020) questioned the employment of the ITS locus alone 
in separating cryptic species in Boletales. In particular, 
Balasundaram et al. (2015) suggested using ITS only in 
combination with other loci, after pointing out that btub, 
hsp, rpb2, and tef1 loci are more informative than ITS at 
the species level (even in single-locus trees). Interspecific 
hybridization events have been documented in Coniophora 
(Kauserud et al. 2007), Leccinum (den Bakker et al. 2007), 
and Octaviania (Orihara et al. 2021).

The more commonly used loci in combined analyses in 
Boletales (besides ITS) are SSU, 5.8S, LSU, atp6, cox1, 
cox3, mtSSU, mtLSU, rpb1, rpb2, tef1, gdp, Gapdh, btub, 
and hsp, and a combination of actA, gpiA, hydA, rabA, 
and btub (Kretzer and Bruns 1999; Peintner et al. 2003; 
den Bakker and Noordeloos 2005; den Bakker et al. 2007; 
Beugelsdijk et al. 2008; Hedh et al. 2008; Dentinger et al. 
2010, 2011; Li et al. 2011; Skrede et al. 2011; Neves et al. 
2012; Wilson et al. 2012; Gelardi et al. 2013, 2015; Moreau 
et al. 2013; Jargeat et al. 2014, 2016; Phosri et al. 2014; Wu 
et al. 2014, 2016, 2018; Zhao et al. 2014a, b; Balasunda-
ram et al. 2015; Sato and Hattori 2015; Trappe et al. 2015; 
Henkel et al. 2016; Orihara et al. 2016; Raspé et al. 2016; 
Davoodian et al. 2018, Farid et al. 2018; Song et al. 2019; 
Vadthanarat et al. 2019a, b; Varga et al. 2019; Frank et al. 
2020; Haelewaters et al. 2020a; Han et al. 2020; Kuo and 
Ortiz-Santana 2020; Liu et al. 2020; Sánchez-García et al. 
2020; Orihara et al. 2021). Dowie et al. (2017), using ten 
anonymous nuclear loci (ANL), produced a phylogeny of 
Rhizopogon subgenus Amylopogon with much greater reso-
lution than the one based on ITS alone.

Conclusion and recommendations

Species delimitation ideally rests upon an integrative 
approach, integrating—as already mentioned for Agari-
cales—morphological features, cultural characteristics, 
mycelial compatibility studies, pigments and secondary 
metabolites composition, sequence data, ecological strate-
gies, and host preferences. The ITS is the marker of choice 
for species identification. In case of species complexes, it 
is suggested to use a combination of rpb1, rpb2, tef1, atp6, 
cox3, and gpd (Matheny et al. 2007; Jargeat et al. 2014, 
2016; Gelardi et al. 2015; Davoodian et al. 2018; Farid et al. 
2018; Vadthanarat et al. 2019a, b; Varga et al. 2019; Han 
et al. 2020; Kuo and Ortiz-Santana 2020). Strongly sup-
ported phylogenies and reliable species delimitation analyses 
can be obtained by combining several (unlinked) loci (Wu 
et al. 2014, 2016; Sato et al. 2017; Sato and Toju 2019). An 
impressive example of a multilocus analysis was recently 
published by Sato et al. (2017), where a phylogenetic recon-
struction inferred from sequences of 80 single-copy genes 
of the ECM Afroboletus and Strobilomyces suggested that 

host-shift events, particularly those dealing with Fagaceae/
Pinaceae, can provide ecological opportunities for a burst in 
the diversification of the two fungal genera.

Species delimitation in Corticiales

Corticioid fungi in the wide sense are a highly polyphyl-
etic group of fungi with resupinate basidiomata as synapo-
morphic character. The term corticioid derives from Corti-
cium, a crust-like genus, and the name is usually referred to 
resupinate homobasidiomycetes, with a variable hymenial 
configuration, from smooth to poroid forms. Gorjón (2020) 
compiled and keyed out the 420 accepted genera of corti-
cioid fungi. Resupinate forms occur in every major clade of 
Agaricomycetes (Hibbett and Binder 2002; Larsson et al. 
2004; Larsson 2007), and in this work they are considered in 
all treated orders. Corticioid fungi may have evolved repeat-
edly through reduction from erect forms (Hibbett and Thorn 
2001; Larsson et al. 2004) or, alternatively, they may repre-
sent the ancestral form of basidiomata (Hibbett and Binder 
2002; Binder et al. 2005; Sánchez-García et al. 2020). The 
order Corticiales sensu stricto currently contains about 120 
species in 26 genera and four families (Corticiaceae, Den-
drominiaceae, Punctulariaceae, Vuilleminiaceae).

Despite being simple in macro- and micromorphology, 
taxa of Corticiales show considerable ecological and nutri-
tional diversity, including saprotrophic, lichenicolous, plant 
pathogenic, and lichenized lineages inhabiting diverse types 
of substrata (Ghobad-Nejhad et al. 2010). The group is char-
acterized by basidiospores with pink-colored walls, which is 
evident in a spore print. Many species develop a catahyme-
nium with probasidia deeply sunken in a dense layer of den-
drohyphidia as an adaptation to desiccation (Larsson 2007).

Species concepts and species recognition

Genera and species in the Corticiales have been delimited 
based on multiple features: basidioma morphology, micro-
scopic features such as presence or absence of cystidial ele-
ments and shape and size of basidiospores, mating tests, 
habit and nutritional mode, host preferences, and geographi-
cal distribution.

Corticium and related genera Dendrocorticium and Den-
tocorticium have been extensively studied based on mor-
phological characters and host preference data (Boidin and 
Lanquetin 1983; Duhem and Michel 2008, 2009; Larsen and 
Gilbertson 1974, 1977; Larsen and Nakasone 1984); DNA 
sequences are lacking for most species and phylogenetic 
relationships are unresolved.

Species identification in the decorticant corticioid 
Vuilleminia has been based primarily on host identifica-
tion, spore size, and cystidial configuration. According to 
Ghobad-Nejhad et al. (2010), however, spore size and host 
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specificity are not so critically important factors for delim-
iting species of Vuilleminia compared to ITS sequences. 
However, the heterogeneous nature of the Vuilleminia come-
dens group with respect to spore size and shape is not fully 
reflected only by ITS sequence data.

Conclusion and recommendations

The ITS divergence between some species in the Corticiales 
(e.g., V. comedens and V. coryli, about 2.0–2.2%) is lower 
than the average value for intraspecific variation in Basidi-
omycota (sensu Nilsson et al. 2008). Most phylogenetic 
analyses in Corticiales have been based on ITS and LSU 
(Ghobad-Nejhad et al. 2010; Ghobad-Nejhad and Duhem 
2014). For studies within species complexes and to delimit 
species, the recommended approach is using a combination 
of ITS, LSU, tef1, rpb1, and rpb2 and integrate morpho-
logical features, biochemical reactions, mating compatibil-
ity tests, decaying abilities, ecological strategies, and host 
preferences.

Species delimitation in Geastrales

Geastrales is an order in the Phallomycetidae, compris-
ing exclusively gasteroid and primarily saprotrophic fungi 
(Hosaka et al. 2006). Rhizomorphs are typically conspicu-
ous, with generative hyphae bearing some ampullaceous 
septa, and certain species develop a notorious mycelial 
subiculum on the substrate. Basidiomata are either stellate 
at maturity or sequestrate, the peridium is bi- to pluristratifi-
cate, with a ± membranous endoperidium, and basidia often 
bear more than four basidiospores, which are inamyloid, 
nondextrinoid, symmetric, and centrally attached to the ster-
igmata (Sunhede 1989; Hosaka et al. 2006). The order was 
originally defined to accommodate earthstar-like genera with 
a powdery glebal mass (Geastrum and Myriostoma, Kreisel 
1969), and only later expanded to its current circumscrip-
tion, with the inclusion of Sclerogastraceae (Hosaka et al. 
2006; Hosaka and Castellano 2008). Geastrales contains 
about 160 species in six genera (Boninogaster, Geastrum, 
Myriostoma, Schenella, Sclerogaster, Sphaerobolus) and 
four families (Geastraceae, Schenellaceae, Sclerogastraceae, 
Sphaerobolaceae). Geastrum is, by far, the most species-rich 
genus, with probably more than 130 species (Zamora et al. 
2014a; He et al. 2019).

Systematics in Geastrales have been based on morpho-
logical features until the last decades. Genera are well-
defined based on phenotypic characters, although molecular 
data have played a decisive role to assess the placement of 
some sequestrate taxa, for example the current acceptance 
of Radiigera as a sequestrate form of Geastrum (Jeppson 
et al. 2013; Zamora et al. 2014a). The generic bounda-
ries among Boninogaster and Sclerogaster are still not 

completely solved (Hosaka and Castellano 2008), while the 
identification of Myriostoma, Schenella, and Sphaerobolus 
at generic level does not represent a particular challenge. 
Problems for species delimitations are, however, numerous. 
Geastrum includes several widely recorded species that most 
likely represent species complexes (e.g., G. pectinatum, G. 
saccatum, G. schweinitzii, G. striatum) (see Zamora et al. 
2015; Accioly et al. 2019). The systematics of the genus 
Sphaerobolus has been revised in Geml et al. (2005) and that 
of Myriostoma in Sousa et al. (2017).

Species concepts and species recognition

Most species of Geastrales can be recognized based on 
detailed morphological studies. Different sets of characters 
are used for each genus. Macromorphologically diagnos-
tic traits include basidioma development (hypogeous, epi-
geous), dehiscence (stellate, irregular, indehiscent), num-
ber of peridial layers (e.g., in Geastrum and Sphaerobolus), 
presence or absence of subiculum, ability of the external 
mycelial layer to encrust debris (Geastrum), ornamentation 
of the endoperidium (Geastrum, Myriostoma), presence 
or absence of stalk(s) and their morphology (Geastrum), 
presence of a peristome and its ornamentation (Geastrum, 
Myriostoma), organization of the glebal mass (chambered 
or not in Sphaerobolus, forming peridioles of various sizes 
and persistency in Schenella), color of the glebal mass 
(Geastrum, Sclerogaster), general basidioma habit, size, 
and color, among others. Micromorphological characters 
include basidiospore morphology (shape, size, ornamenta-
tion, including scanning electron microscope studies), pres-
ence or absence of gemmae (Sphaerobolus), capillitium 
features, morphology of the cells in different parts of the 
fruitbody (e.g., thin- or thick-walled in the pseudoparen-
chymatous layer of Geastrum, or protruding hyphae on the 
endoperidial surface), and crystalline deposits on the endo-
peridial body (Geastrum). The morphology of rhizomorph 
crystals proved to be of great importance to separate species 
groups in Geastrum, as well as macrochemical spot tests 
with reagents detecting phenoloxidase activity (Zamora 
et al. 2013). The use of statistical analyses is infrequent, but 
clustering analyses were used in Zamora et al. (2013) and 
morphometrics in Zamora et al. (2014b, 2015).

The first phylogenies focusing on species-level taxonomy 
in Geastrales were based on LSU (Douanla-Meli et al. 2005), 
but soon included multilocus approaches combining the ITS, 
LSU, and atp6 (Hosaka and Castellano 2008; Kasuya et al. 
2012). Jeppson et al. (2013) published the first phylogeny 
on European species of Geastrum using ITS, LSU, atp6, 
and tef1, and Zamora et al. (2014a, b, 2015) used concat-
enated datasets of ITS, LSU, atp6, and rpb1 sequences in 
their worldwide phylogeny of Geastrum and species delimi-
tation studies in G. sect. Schmidelia and G. sect. Geastrum.
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Conclusion and recommendations

Much work is needed on species delimitation in Geastrales, 
particularly in the genera Geastrum and Sclerogaster. The 
many old species names, for which sometimes there is not 
original material left, will inevitably delay the resolution of 
some species complexes, until the identity of all relevant 
names is settled. Particularly challenging groups are species 
complexes in Geastrum involving, e.g., G. javanicum, G. 
lageniforme, G. saccatum, and G. triplex, for which world-
wide-based monographs are required. The current general 
trend in the group is to split rather than to synonymize taxon 
names (Jeppson et al. 2013; Zamora et al. 2015; Sousa et al. 
2017; Accioly et al. 2019), and most species described in 
the last decade have both phenotypic, ecological, biogeo-
graphical, and molecular associated data—the recommended 
approach. Importantly, old taxon names should be investi-
gated in detail (including type studies whenever possible) 
before proposing nomenclatural changes, as this will avert 
the publication of redundant names for already described 
species. Given the complexity of the fruitbodies in some 
species, studying sufficient well-preserved specimens will 
prevent defective/flawed descriptions that may introduce 
confusion in the literature. Finally, the analysis of unlinked 
DNA loci will contribute to robust phylogenies and well-
supported species delimitation analyses, overcoming the 
limitations of single-locus approaches.

Species delimitation in Gloeophyllales

The order Gloeophyllales, with about 50 known species in 
13 genera, contains a morphologically diverse array of poly-
pores (Gloeophyllum s.l.), agarics (Neolentinus, Heliocybe), 
and resupinate fungi (Veluticeps, Boreostereum, Chaetoder-
mella), most of which are demonstrated to produce a brown 
rot mode of wood decay and are found preferentially on 
coniferous substrates (García-Sandoval et al. 2011). Rela-
tionships within the Gloeophyllales are important to under-
standing the evolution of brown rot fungi in Agaricomyco-
tina. Phylogenies of Gloeophyllales have been performed 
using sequences of SSU, 5.8S, LSU, rpb2, tef1, and atp6 
(García-Sandoval et al. 2011). Species-level phylogenetic 
studies have thus far been based on combined ITS–LSU 
datasets (He and Li 2013; He et al. 2014).

Species concepts and species recognition

Species, and also genera, of Gloeophyllales can usually be 
recognized based on morphological characters. There are 
few agaricoid forms, and important characters for resupi-
nate and polyporoid lineages are presence/absence of a well-
developed pilear surface and hymenophore configuration, 
which varies from smooth to poroid with round or daedaloid 

to lamellate pores. Most species in Gloeophyllales have cys-
tidial elements that are of importance to delimit species. 
Some generic limits within Gloeophyllales are uncertain. 
For example, Heliocybe and Neolentinus are either placed 
in synonymy (Rune 1994) or treated as two genera (García-
Sandoval et al. 2011) and Campylomyces and Pileodon are 
segregates of Veluticeps that have yet to be included in phy-
logenetic analyses (Nakasone 2004). Gloeophyllum in the 
wide sense includes a dozen species with variable hymeno-
phore configuration. The genus is polyphyletic (García-San-
doval et al. 2011) and He et al. (2014) proposed to use the 
previously introduced genera Griseoporia and Osmoporus 
and erected Hispidaedalea to accommodate several species 
previously in Gloeophyllum.

Conclusion and recommendations

A combination of morphology and molecular phylogenetic 
data is suggested for continued species delimitation in 
Gloeophyllales. Species have thus far only been discrimi-
nated based on nuclear ribosomal DNA (rDNA) sequences 
(ITS, LSU). For example, the resupinate genus Veluticeps 
with about ten species worldwide has only been studied 
using the ITS region (He and Li 2013). Usually, species of 
Veluticeps and related taxa are well defined by morphologi-
cal characters (Nakasone 2004). However, widely distributed 
species, such as V. berkeleyi that has been reported from 
North America, Europe, and eastern Asia, may represent 
species complexes. The ITS region do not provide sufficient 
variation to resolve such complexes in Gloeophyllales, and 
protein-coding genes such as rpb2, atp6, and tef1 should be 
tested for their efficacy in delimiting species (Gorjón and 
Bernicchia 2010; S.P. Gorjón, unpubl. data).

Species delimitation in Gomphales

Gomphales (sensu Jülich 1981) is a monophyletic order 
of Agaricomycetes, informally known as gomphoid fungi 
(Jülich 1981; Hibbett and Thorn 2001; Hosaka et al. 2006; 
Giachini et al. 2010; Hibbett et al. 2014). The order includes 
species with different basidioma morphologies including 
coral-shaped (e.g., Phaeoclavulina, Ramaria, Ramaricium, 
Lentariaceae), club-shaped (Clavariadelphaceae), gilled 
(Gloeocantharellus), cantharelloid-gomphoid (e.g., Gom-
phus, Phaeoclavulina, Turbinellus), tooth-like (Beenakia), 
resupinate-odontoid (Hydnocristella and Kavinia), and 
sequestrate (Gautieriaceae) (Pine et al. 1999; Villegas et al. 
1999; Humpert et al. 2001; Hosaka et al. 2006; Giachini 
et al. 2010; Hibbett et al. 2014). Despite their macromorpho-
logical variations, the members of this clade share a num-
ber of microscopic and macrochemical characters, including 
cyanophilic spore ornamentation, chiastic basidia, hyphal 
construction, and positive hymenial reaction to ferric sulfate 
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(Donk 1964; Villegas et al. 1999). Ecologically, the order 
includes saprotrophic, lignicolous, and ECM taxa.

Species concepts and species recognition

Species delimitation based on morphological characteristics 
is heavily depending on genus. The presence or absence of 
clamp connections (Corner 1950, 1966, 1970), cyanophilic 
reaction of basidiospores to cotton blue (Kotlaba and Pouzar 
1964), and spore ornamentation (Marr and Stuntz 1973) are 
the most important morphological characteristics to separate 
species within Ramaria. In Gomphus, Phaeoclavulina, and 
Turbinellus, basidioma characteristics (color, shape, size, 
habitat, overall aspect), size and ornamentation of basidi-
ospores, and hyphal construction (clamped, non-clamped, 
branching pattern) provide the best results in species delimi-
tation. In some genera, like Clavariadelphus, staining reac-
tions to KOH,  FeCl3, and  NH4OH are informative for species 
recognition (Methven 1990; Huang et al. 2020), whereas for 
Beenakia, Hydnocrystella and Kavinia, basidiospore shape, 
ornamentation, and size as well as fruiting body morphol-
ogy are generally useful to disciriminate at the species level 
(Nuñez and Ryvarden 1994; Chen et al. 2015; Robledo and 
Urcelay 2017). Even though informative, morphological 
characters alone are in most cases insufficient for accurate 
species delimitation in Gomphales.

Several molecular markers have been designed, tested, 
and established to identify species within Gomphales: 
SSU, LSU, mtSSU, rpb2, tef1, and atp6 (Vilgalys and Hes-
ter 1990; White et al. 1990; Kretzer and Bruns 1999; Pine 
et al. 1999; Humpert et al. 2001; Giachini 2004; Hosaka 
et al. 2006; Giachini et al. 2010; Knudson 2012; Maneevun 
et al. 2012). For some taxa, it is also possible to use the ITS 
barcode for species delimitation, but its use varies greatly 
among genera (Giachini 2004; Knudson 2012; Maneevun 
et al. 2012; Huang et al. 2020).

Conclusion and recommendations

Accurate species delimitation relies upon the combination 
of morphological, ecological, biochemical, and molecular 
phylogenetic data. This integrative approach is necessary; 
many species share similar morphological traits, which 
makes it difficult to make species-level identifications. 
Taxa such as Ramaria flava, which is frequently cited in 
the literature, present problems of conceptualization and are 
frequently considered in a very broad sense often contradict-
ing the original description of the taxon. Species such as 
R. sanguinea, R. vinosimaculans, and many more are pos-
sibly being hidden under an incorrect name (Estrada-Torres 
1994). Species of Phaeoclavulina face the problem of dif-
ferent fruiting body morphologies that can easily place spe-
cies within Ramaria. Gomphus and Turbinellus also share 

very similar macromorphological characters that tend to put 
species into either one of the genera by the untrained eye. 
Kavinia and Hydnocristella are hard to identify and separate 
due to the inconspicuous format of basidiomata, just to name 
some of the major challenges.

Species delimitation in Hymenochaetales

Hymenochaetales is a large order of Agaricomycetes, with 
over 900 species and more than 80 currently recognized 
genera, placed in six families (Coltriciaceae, Hymeno-
chaetaceae, Oxyporaceae, Repetobasidiaceae, Schizo-
poraceae, Tubulicrinaceae). The order is dominated by 
wood-inhabiting saprotrophs and trunk rot parasites caus-
ing white rot (e.g., Hyphoderma, Hyphodontia, Inonotus 
s.l., Phellinus s.l., Rigidoporus, Trichaptum, Tubulicrinis, 
Xylodon), ECM symbionts (Coltricia, Coltriciella), and 
bryophyte-associated agarics (Loreleia, Rickenella). There 
is a large variation in basidioma morphology including 
polyporoid, poroid, corticioid, stereoid, hydnoid, agari-
coid, clavarioid, corraloid, and fan- to funnel-shaped.

Species concepts and species recognition

Traditionally, the following characters have been crucial for 
species delimitation based on morphology: size and shape of 
basidiomata, basidiospores, setae, and cystidia. Delimitation 
of species based on morphology alone is not recommended, 
because many taxa harbor cryptic species complexes (e.g., 
Fomitiporia, Phellinus igniarius group, Porodaedalea). 
Analyses of DNA content, sexuality pattern (homothallic 
vs. heterothallic), and mating tests were applied in studies in 
Inonotus s.l. and Phellinus (Fischer 1987, 1994). In parasitic 
taxa, the host spectrum is considered to be informative for 
species delimitation (Fischer and Binder 2004; Tomšovský 
et al. 2010a, b; Zhou et al. 2016a, b; Wu et al. 2018). RFLP 
also helped to understand relationships among species in 
the Phellinus igniarius group or within Porodaedalea (Fis-
cher 1996; Fischer and Binder 1995). Whereas genera of 
Hymenochaetales are generally separated using LSU-based 
phylogenies, the most connomly used marker for species 
delimitation is the ITS barcode (Fischer and Binder 2004; 
He and Li 2012; Vlasák and Vlasák 2017). Recent studies 
usually employ the ITS in combination with other mark-
ers. Combination of the ITS and LSU loci is the most com-
mon approach applied in analyses of Coniferiporia and 
Phellinidium (Zhou et al. 2016a, b), Fomitiporia (Liu et al. 
2018), Fulvifomes (Salvator-Montoya et al. 2018), Lyomy-
ces (Yurchenko et al. 2017), Phellinotus (Drechsler-Santos 
et al.2016), Rigidoporus (Wu et al. 2017), Sidera (Miettinen 
and Larsson 2011), and Xylodon (Riebesehl et al. 2019). 
Combination of the ITS and tef1 markers are applied in 
identification of species in Hydnoporia (Miettinen et al. 
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2019), Phellinus s.s. (Tomšovský et al. 2010b; Zhou et al. 
2016a, b), and Porodaedalea (Tomšovský et al. 2010a; Wu 
et al. 2018). The phylogenetic reconstruction of four-locus 
datasets of ITS, LSU, rpb2, and tef1 sequences has been 
applied in Fomitiporia (Amalfi et al. 2014; Campos San-
tana et al. 2014; Alves-Silva et al. 2020) and Porodaedalea 
(Brazee and Lindner 2013), whereas a combined SSU, 5.8S, 
LSU, and rpb2 dataset is employed in the taxonomic study 
of Hyphoderma and Lawrynomyces (Salcedo et al. 2020).

Conclusion and recommendations

Most of the numerous taxonomic studies of Hymeno-
chaetales that were recently published are focused on Hyme-
nochaetaceae. Knowledge about the other families is limited. 
Especially corticioid and odontoid genera such as Hypho-
derma, Hyphodontia, Kneiffiella, Lyomyces, Peniophorella, 
Tubulicrinis, and Xylodon deserve more monographic treat-
ments based on morphology and multilocus phylogeny. 
Some genera within Hymenochaetaceae also deserve more 
study—for example, DNA sequences are lacking for Cla-
variachaete. Similar to other orders of Agaricomycetes, a 
polyphasic approach incorporating data from morphology, 
ecology, biogeography, and multilocus phylogenetic analy-
ses is suggested. Multilocus datasets should not only include 
sequences of ITS and LSU, but also of protein-coding genes 
(tef1, rpb1, rpb2). Also data of sexuality pattern, genome 
size, and ploidy level are helpful for accurate taxonomy. In 
the case of species complexes, the diversification is often 
associated with host specificity and geographic distribution 
(Tomšovský et al. 2010a, b; Zhou et al. 2016a, b). In these 
highly divergent parasitic taxa, intragenomic ITS polymor-
phisms repeatedly decrease the quality of ITS sequences. For 
example, in the genus Porodaedalea, phylogenies based on 
ITS–tef1 and a four-locus dataset (ITS, LSU, rpb2, tef1) have 
been unable to resolve the taxonomy of the “Porodaedalea 
holarctic group” (Brazee and Lindner 2013) and “Porodae-
dalea spp. 3 and 4” (Wu et al. 2018). A genome-wide geno-
typing method (e.g., AFLP, ddRADseq) would be useful 
to study speciation processes dependent on biogeographic 
pattern and host association.

Species delimitation in Jaapiales

Jaapiales is the smallest order of Agaricomycetes includ-
ing a single corticioid genus, Jaapia, with two species, 
Jaapia argillacea and J. ochroleuca. Both Jaapia species 
produce thin, fully resupinate basidiomata and function as 
saprotrophs growing in very wet wood. Analyses of nuclear 
and mitochondrial rDNA genes (Binder et al. 2005) placed 
Jaapia as the sister group of the rest of Agaricomycotina, 

but analyses of the LSU alone (Larsson 2007) resulted in 
Jaapia being a close relative of Corticiales, Gloeophyllales, 
and Thelephorales.

Species concepts and species recognition

Members of the order are characterized by adnate, effused, 
smooth basidiomata, by the monomitic hyphal system with 
clamped hyphae and tubular, projecting, thick-walled cys-
tidia, and by the fusiform strongly cyanophilous basidio-
spores (Eriksson and Ryvarden 1976; Bernicchia and Gorjón 
2010). The two species Jaapia argillacea and J. ochrole-
uca are well separated by differently shaped thick-walled 
basidiospores. The phylogenetic analysis of an ITS dataset 
revealed two clades that correspond to the two described 
species (Telleria et al. 2015).

Conclusion and recommendations

There are no species delimitation problems in Jaapiales. 
The separation of the two known species is confirmed by 
both morphology and phylogenetic studies. Based on the 
results of Telleria et al. (2015), we recommend the ITS as 
the barcode for future studies of species delimitation in this 
small order.

Species delimitation in Polyporales

Polyporales is a well-supported monophyletic clade 
(Matheny et al. 2007). The order contains 3553 described 
species (Kirk 2019), placed in 292 genera and 19 families 
(Wijayawardene et al. 2020). The great majority of these are 
lignicolous saprotrophs, whereas a few are plant pathogens 
and root parasites (Binder et al. 2013). Members of Poly-
porales are frequently isolated as endophytes from woody 
tissues and roots (Martin et al. 2015; Duan et al. 2019) and 
some of them (Microporus, Physisporinus) form mycor-
rhizal associations with orchids (Ogura-Tsujita et al. 2018; 
Yamashita et al. 2020). A wide variety of basidioma types 
exist in Polyporales, including perennial conks (e.g., Larici-
fomes) and pileate-stipitate, effused-reflexed or resupinate 
forms. A few species produce multiple flabelliform lobes 
(e.g., Hydnopolyporus, Sparassis), Cryptoporus volvatus has 
a unique poroid basidioma that is enclosed by a subtended 
volva (Park et al. 2014), and Lentinus tigrinus has a typical 
agaricoid basidioma with lamellate hymenophore (Hibbett 
et al. 1994). The hymenophore is mainly poroid in Polypo-
rales, but can also be hydnoid, merulioid, or smooth (Hibbett 
et al. 2014). Several species in the order have an asexual 
stage (Stalpers 1984, 2000) and some form subterranean 
sclerotia (Smith et al. 2015; Wu et al. 2020a).
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Species concepts and species recognition

Species identification in Polyporales has traditionally relied on 
macro- (e.g., basidioma shape, pilear and hymenial surface) 
and micromorphological characteristics (e.g., hyphae, hyphal 
system, cystidia, basidia, basidiospores). However, character-
istics differ for each taxon, and these concepts have changed 
over time according to subjective aspects. The genus Gano-
derma, the largest genus in Polyporales with about 180 spe-
cies (He et al. 2019), is probably the most expressive exam-
ple for this problem. Morphology-dependency has resulted in 
ambiguous species circumscriptions in Ganoderma (Lloyd 
1905; Ryvarden 1991; Papp et al. 2017). Since the DNA era, 
several molecular markers have been used to clarify species 
boundaries within the genus: IGS, SSU, ITS, LSU, mtSSU, 
btub, rpb1, rpb2, tef1, and atp6 (Moncalvo et al. 1995; Hong 
and Jung 2004; Sun et al. 2006; Zheng et al. 2009; Wang et al. 
2012; Thakur et al. 2015; Zhou et al. 2015; Loyd et al. 2018; 
Xing et al. 2018). Recently, when new Ganoderma species 
are described, they are almost exclusively supported by mul-
tilocus phylogenies incorporating sequences from rDNA loci 
as well as from protein-coding genes (tef1, rpb1, rpb2) (e.g., 
Liu et al. 2019; Luangharn et al. 2019; Tchotet Tchoumi et al. 
2019; Ye et al. 2019; Wu et al. 2020c). In addition to mor-
phological observations and molecular phylogenetic analyses, 
metabolic profiling has been suggested in species delimitation 
(Richter et al. 2015).

Several DNA-based studies have reported remarkable 
species diversity within previously recognized morphospe-
cies—including Antrodia spp. (Spirin et al. 2015a, 2016a, 
2017), Ceriporia purpurea (Spirin et al. 2016b), Jahnoporus 
hirtus (Spirin et al. 2015b), Laetiporus sulphureus (Lind-
ner and Banik 2008; Song et al. 2014, 2018), Skeletocutis 
nivea (Korhonen et al. 2018), Sparassis crispa (Hughes et al. 
2014), and Wolfiporia cocos (Wu et al. 2020a). One of the 
most striking examples of hidden species diversity revealed 
by molecular phylogenetic studies was observed in Cya-
nosporus (previously: Postia caesia complex). This genus 
forms a distinctive morphological group, which contains 
closely related brown-rot polypore species, characterized by 
blue-tinted basidiomata, curved, weakly cyanophilous, and 
greyish basidiospores, and amorphous aggregates (Miettinen 
et al. 2018; Shen et al. 2019). Before molecular methods 
became available, mating tests, macroscopic characteris-
tics (e.g., the structure of upper surface, size and color of 
basidiomata), and basidiospore width were proposed as main 
features for species delimitation within the complex (David 
1974, 1980; Corner 1989; Rajchenberg 1995; Ryvarden 
1988; Niemelä et al. 2001; Pieri and Rivoire 2005; Papp 
2014, 2015). However, morphology-based species was not 
confirmed by the early phylogenetic studies (e.g., Yao et al. 
2005; Ortiz-Santana et al. 2013; Pildain and Rajchenberg 
2013). Only recently, multilocus phylogenetic analyses have 

revealed unexpected species diversity in the complex (Miet-
tinen et al. 2018; Shen et al. 2019; Liu et al. 2021). Never-
theless, the separation of cryptic species is difficult based on 
morphology alone, and DNA sequences are required for reli-
able delimitation. The ITS barcode is the most widely used 
molecular marker but does not have enough discriminatory 
power in some taxa. For example, Cyanosporus fusiformis 
and C. ungulatus differ in their ITS only by 1 nucleotides 
(nt), and C. mongolicus and “Postia” auricoma differ only 
by 2 nt. It is noteworthy that based on a polymorphic ITS 
sequence of a collection from Russia, Miettinen et al. (2018) 
inferred interspecies hybridization within Cyanosporus alni 
and “Postia” populi, further complicating the delimitation 
of species in Cyanosporus. Among other molecular mark-
ers, only tef1 sequences are widely available for the species 
in Cyanosporus (Miettinen et al. 2018). The tef1 gene is in 
general more variable between species than ITS and pro-
vides greater resolution in separating species; for example, 
ITS sequences vary only between 1 and 6 nt between species 
in the C. alni clade, whereas variation in tef1 is between 9 
and 32 nt (Miettinen et al. 2018). Cyanosporus is currently 
one of the most difficult genera of Polyporales for species 
delimitation and the use of ITS alone is often insufficient.

In addition to molecular phylogenetic analyses and mor-
phological study of basidiomata and mycelia, Peintner et al. 
(2019) studied growth characteristics, carried out enzyme 
assays, and comparatively analyzed volatile compounds in 
order to resolve cryptic species in Fomes fomentarius s.l. 
These authors found that the hymenophore pore diameter 
and the diameter of skeletal hyphae are taxonomically valu-
able features if measured from statistically relevant struc-
tures. Furthermore, they found that the content of volatile 
organic compounds as well as the mycelial characteristics in 
pure culture (e.g., daily mycelial growth rates, temperature 
range of pure cultures) are promising features for reliable 
species delimitation. Cultural characteristics and mycelial 
compatibility tests have long been used for species delimita-
tion in Polyporales (e.g., Nobles 1948, 1965; David 1974; 
Stalpers 1978; Hallenberg 1988; Rajchenberg 1995). As an 
example, different strains of Phlebia livida were recognized 
to be incompatible in mating tests by Hallenberg (1988). 
Hallenberg and Larsson (1993) suggested that the Phlebia 
livida complex consists of two incompatible subspecies. 
Later, Ghobad-Nejhad and Hallenberg (2012a, b) proposed 
that the two subspecies be raised to species rank based also 
on morphology, phylogenetic analysis of an ITS dataset, 
haplotype network of the ITS1 spacer region, and substrate 
preference.

Conclusion and recommendations

Historically, species recognition in Polyporales was mostly 
based on examination of morphological characteristics, 
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which are often subjective or highly variable (e.g., in Gan-
oderma). These problems have been circumvented by the 
introduction of approaches based on DNA sequencing of 
conserved genomic regions. The ITS quickly became the 
most widely applied barcoding marker in Polyporales. For 
many genera in the order, the ITS is an appropriate marker 
for species delimitation and can be successfully sequenced 
from historical herbarium type specimens (Papp and Dima 
2018). However, the ITS barcode is not equally variable in 
all Polyporales; it provides insufficiently resolution to allow 
correct identification of certain fungal groups (e.g., within 
the Postia caesia complex). Phylogenetic reconstructions 
of multilocus datasets are recommended, in combination 
with detailed micro- and macromorphological examina-
tions, biological studies (mating tests), ecological strategy, 
and biogeography. An excellent study for such an integrative 
taxonomic approach is provided by Haight et al. (2019) on 
the Fomitopsis pinicola complex in North America.

Species delimitation in Russulales

Within Russulales, one of the largest orders in Agaricomy-
cota with an estimated 4000 species, Russulaceae is the larg-
est family with an estimated 1700 species. This family shows 
a huge variation in basidioma morphology as well as in eco-
logical strategies, with the most species-rich genera—Lac-
tarius, Lactifluus, and Russula—being mainly agaricoid and 
ECM. Russulaceae display quite a large number of charac-
ters and especially very variable characters that are difficult 
to determine character states for. Pileus colors, for example, 
can be very variable within a single species and they form a 
continuous range of states within and among different Rus-
sula species. Milkcaps (Lactarius and Lactifluus) exude a 
milk-like solution (latex), which, however, often changes 
color after seconds or minutes, or even during drying. The 
milk might also change the color of the context and the gills. 
All these characters are generally hard to quantify, but have 
historically received a lot of attention and importance in 
the delimitation of species. Also smells and tastes, although 
sometimes very prominent, are often subjective characters. 
The same is true for microscopic characters. Basidiospore 
ornamentation in Russulaceae is a very striking and useful 
feature but also shows a fairly large amount of intraspecific 
variation.

Species concepts and species recognition

Species delimitation in Russulaceae followed the mor-
phological species concept until the 1980s and 1990s. A 
combination of macro- and micromorphological characters 
was used to delimit and recognize species. Also ecological 
features such as soil characteristics, vegetation types, and 
especially host association have always been important in 

species delimitation of Russulaceae. The biological species 
concept was never used in this group since it is impossible 
to bring these ECM fungi in culture, with a few exceptions. 
As in other groups of Agaricomycota, the onset of molecular 
tools initially made it clear that some characters, such as 
fruiting body shape and hymenophore type, had received 
too much importance in the morphological species concept. 
From the early 2000s, angiocarpic and sequestrate species 
were included in the traditional agaricoid genera (Desjardin 
2003; Eberhardt and Verbeken 2004; Nuytinck et al. 2004). 
Molecular tools also made it clear that characters related to 
the pileipellis structure (both macroscopic and microscopic) 
have a larger phylogenetical signal than, e.g., ornamentation 
of basidiospores, pileus pigmentation, and latex (in the case 
of milkcaps).

Within the milkcaps, striking evolutionary differences are 
observed between the two genera Lactifluus and Lactarius. 
While the high morphological variation in the larger genus 
Lactarius (with about 450 accepted species) is not reflected 
in its phylogenetic structure with rather short branch lenghts, 
a large genetic diversity is apparent in the smaller genus 
Lactifluus (with 224 accepted species). This diversity results 
in very different and distant clades, but also in intricate spe-
cies complexes, such as the Lactifluus volemus complex (De 
Crop et al. 2021). Van de Putte et al. (2010, 2012, 2016) 
showed that both morphologically “pseudocryptic” as well 
as truly cryptic species exist in this complex. Pseudocryptic 
species look alike at first sight but can be distinguished once 
appropriate but often subtle characters are considered.

Resupinate Russulales are of high importance in the 
phylogeny of the group (Larsson and Larsson 2003). 
Donk (1971) was the first to discuss a possible relation-
ship between taxa such as those mentioned above and 
other groups possessing a system of gloeoplerous hyphae 
(gloeocystidia) and amyloid basidiospores. Some examples 
of phylogenetic studies of species complexes in resupinate 
Russulales are found in Aleurodiscus (Wu et al. 2001; Tian 
et al. 2018), Dentipellis (Zhou and Dai 2013), Echinodon-
tium (Liu et al. 2017), Gloeodontia (Telleria et al. 2008), and 
Heterobasidion (Dai and Korhonen 2009; Chen et al. 2014).

Regarding the corticioid Russulales, the Scytinostroma 
galactinum complex was biologically considered by Boidin 
and Lanquetin (1987) and Nakasone and Micales (1988). 
The species is characterized by the dextrinoid and cyano-
philous skeletoid hyphae, presence of gloeocystidia, and nar-
rowly ellipsoid to subcylindrical basidiospores. Boidin and 
Lanquetin (1987) discussed the separation of four species 
in the complex based on inter-incompatibility mating tests, 
also matching with geographical separation (Scytinostroma 
galactinum in North America, S. neogalactinum in Central 
America, S. africanogalactinum in tropical Africa, and S. 
eurasiaticogalactinum in Eurasia). Later, Nakasone and 
Micales (1988) separated the North American relatives in 
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two inter-incompatible species (S. galactinum s.s., typically 
on gymnosperms, and S. protrusum with two subspecies 
growing on angiosperms and separated by geographic distri-
bution). Peniophora species were studied by ITS sequences, 
mating tests, morphology, and ecological criteria by Hal-
lenberg et al. (1996). In some species regarded as conspe-
cific based on morphological criteria, these authors found 
intersterility, but such sibling species were not separated by 
the ITS.

Members of the genus Hericium species are coralloid rep-
resentatives of Russulales. Micromorphological variability 
can be very subtle among species (Hallenberg et al. 2013); 
species delimitation has been supported by the evaluation of 
additional data, including substratum preference, geography, 
and molecular phylogenetic data. Thus far, only ITS and 
combined ITS–LSU have been used for species delimitation 
in Hericium (Das et al. 2011, 2013; Hallenberg et al. 2013; 
Jumbam et al. 2019).

The use of a purely morphological species concept has 
gradually changed into a preference for using molecular phy-
logenetic data with morphological support. Relying on DNA 
alone is rarely done and is recommended against because 
of richness in morphological features that usually allow for 
morphology-based species recognition. The most commonly 
used marker is the ITS barcode, although in some species 
complexes it is clear that phylogenies based on ITS alone are 
unresolved. Phylogenies based on multiple unlinked loci pro-
vide independent estimates of the organismal phylogeny, and 
congruence among these estimates furnishes strong evidence 
of species divergence (Taylor et al. 2000). In Russulaceae, 
the following markers are often used alongside ITS: LSU, 
rpb1, rpb2 (De Crop et al. 2014, 2017), tef1 (De Lange et al. 
2021), and more rarely gpd, atp6, mtSSU, and Mcm7 (Nuyt-
inck et al. 2007; Van de Putte et al. 2012; Caboň et al. 2017, 
2019; Looney et al. 2020).

Conclusion and recommendations

As speciation is an on-going, continuous process, species 
might have evolved recently and they can suffer from com-
plications such as incomplete lineage sorting. In this case, 
gene trees may disagree with true species trees and contra-
dict each other. The Bayesian species delimitation technique, 
which allows to delimit species despite incomplete lineage 
sorting and thus provides a powerful tool for delimiting spe-
cies when gene trees are discordant, was applied in Russu-
laceae by De Crop et al. (2014), Van de Putte et al. (2016), 
and Looney et  al. (2020). Most recent studies combine 
sequence data from a single or (preferably) different loci 
with morphological, ecological, and biogeographic charac-
ters in an integrative approach.

Species delimitation in Sebacinales

Sebacinales is one of the earliest diverging groups of Agari-
comycetes that was separated from Auriculariales based on 
molecular phylogenetic data (Weiss and Oberwinkler 2001; 
Weiss et al. 2004). As a heritage from the pre-molecular 
era, several species of the type genus Sebacina still belong 
to the Auriculariales (e.g., S. calcea). Apart from most other 
agaricomycete orders, Sebacinales is characterized by a few 
deep lineages and a few dozens of described species. How-
ever, Sebacinales display several orders of magnitude greater 
species-level richness as revealed from molecular studies in 
soil and plant roots. Sebacinales is divided into two well-
delimited families, Sebacinaceae and Serendipitaceae. Ser-
endipitaceae is monogeneric (genus Serendipita; Weiss et al. 
2016), whereas Sebacinaceae includes eight genera that are 
well-delimited based on morphological and molecular data 
(Oberwinkler et al. 2014). Representatives of Sebacinaceae 
form basidiomata. Serendipita species form no basidiomata 
and their sexual structures are extremely rare (Oberwinkler 
et al. 2013, 2014).

Sebacinaceae is mainly comprised of ECM symbionts, 
but the ancestral groups are humus and wood saprotrophs 
in mostly tropical ecosystems (Oberwinkler et al. 2014). 
The sebacina lineage is one of the largest groups of ECM 
fungi, which is relatively common and diverse in all ecto-
mycorrhiza-dominated plant ecosystems from tropical to 
arctic habitats (Tedersoo et al. 2014b) but only sporadically 
dominant (Ishida et al. 2007; Mühlmann et al. 2008). Cer-
tain taxa in the main clade of Sebacina evolved associations 
with orchids, particularly with species of Neottia (Oja et al. 
2015; Tesitelova et al. 2015) and Hexalectis (Taylor et al. 
2003), both of which include non-photosynthetic species 
that depend entirely on their association with Sebacina fungi 
(McKendrick et al. 2002; Taylor et al. 2003). Both ECM and 
saprotrophic species form gelatinous, corticioid to clavarioid 
and auricularioid basidiomata.

Serendipitaceae includes ubiquitous soil saprotrophs that 
have a strong endophytic affinity to plant roots. For exam-
ple, Serendipita spp. are common in Antarctic soils (Bridge 
and Newsham 2009) and in roots of various agricultural 
and grassland plants in Europe (Garnica et al. 2013; Riess 
et al. 2014). Serendipita spp. also colonize thalli of certain 
hepatics, forming a putatively mutualistic symbiosis (Kottke 
et al. 2003; Bidartondo and Duckett 2010). Members of Ser-
endipita are considered as one of the three main groups of 
“Rhizoctonia” associated with photosynthetic orchids (War-
cup and Talbot 1967; Oberwinkler et al. 2013). In particular, 
Caladenia spp. and Serendipita spp. are often the only sym-
bionts (Huynh et al. 2009; Wright et al. 2010). Compared 
with other “Rhizoctonia”, Serendipita spp. are relatively 
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more common orchid associates in boggy ecosystems (Illyes 
et al. 2010). Furthermore, certain species of Serendipita also 
establish in ericoid mycorrhizal symbiosis, being one of the 
most common groups based on molecular surveys in tem-
perate and tropical montane ecosystems (Allen et al. 2003; 
Selosse et al. 2007). Besides ericoid and orchid mycorrhiza, 
two small groups of Serendipita are ECM with with various 
tree species (Tedersoo and Smith 2013).

Species concepts and species recognition

Because of high macromorphological plasticity and poor 
differentiation of micromorphological characters, Sebacina 
comprises a small number of species. However, molecular 
studies of roots and soil (Tedersoo et al. 2014a, b) suggest 
the presence of hundreds and perhaps thousands of spe-
cies. Based on the distribution of ITS sequence similarity 
among specimens and root tips, Tedersoo et al. (2014b) 
suggested that 98.0 ± 0.5% sequence similarity separates 
the best among molecular species. To our knowledge, ECM 
Sebacinaceae spp. have remained unculturable. Species of 
Serendipita are relatively difficult to culture, but when suc-
cessful they are fast-growing. Thus far, cultures are known 
from the ericoid mycorrhizal and ECM taxa. Species of Ser-
endipita (including those described as Piriformospora) have 
been described based on the teleomorph (Warcup and Talbot 
1967), the presence or absence and morphology of chla-
mydospores (Verma et al. 1998) and monilioid cells (Riess 
et al. 2014), or solely based on differences in the ITS region 
(Fritsche et al. 2020). Due to the difficulties in culturing 
and paucity of informative morphological characters, species 
delimitation in Serendipita relies entirely on DNA barcodes. 
Through clustering optimization, Setaro et al. (2012) deter-
mined that a 1% LSU distance threshold corresponds to the 
3% ITS threshold in Sebacinales.

Conclusion and recommendations

The paucity of taxonomically informative morphological 
characters in Sebacinales has led to only a few described 
species in the order Sebacinales, which contrasts to the two 
or three orders of magnitude more molecular-based esti-
mated species. It is likely that the species-level taxonomy 
of Sebacinales continues to utilize arbitrary ITS and LSU 
sequence similarity thresholds. The lack of cultures in 
Sebacinaceae and difficulties in obtaining cultures of Ser-
endipitaceae hamper sequencing of protein-coding genes 
and whole genomes, which is problematic for phylogenetic 
species recognition. Although closely related species of 
Sebacinaceae and Serendipitaceae seem to perform similar 
functions, delimiting species and major strains may be of 
high importance because of the commercial distribution of 
certain Serendipita indica strains (Oberwinkler et al. 2013) 

and the obligate dependency of certain orchid species on 
their Sebacina or Serendipita symbionts. Fortunately, the 
ITS region provides sufficient resolution and the LSU pro-
vides enough additional information to build phylogenies in 
both families. One of the outstanding questions is whether 
species and strains of Serendipita are capable of forming 
both endophytic interactions and mycorrhizal associations 
with orchids and especially with ericoid plants. From a bio-
technology perspective, it is crucial to understand whether 
commercial inocula are beneficial in various environmen-
tal settings and whether they affect local microbial com-
munities. Finally, for the sake of good taxonomic practices, 
“Sebacina” species belonging to Auriculariales should be 
formally transferred.

Species delimitation in Trechisporales

A small order with about 120 known species in 16 genera 
(He et al. 2019), Trechisporales comprises mostly corticioid 
(= crust-like) fungi, some of which have a poroid hymeno-
phore. Members of the order are morphologically diverse—
some genera as Luellia, Subulicystidium, and Tubulicium 
were recovered in the order only because of molecular phy-
logenetic analyses since they have no morphological traits 
in common with Trechispora, the type genus. All species 
have a monomitic hyphal system with clamped hyphae and 
many species have rhizomorphs. The nutritional mode is not 
known but species often occur on strongly decayed wood 
or other debris on the ground and there is the possibility 
that at least some species are soil-dwelling saprotrophs or 
involved in interactions with plants (Larsson 2007; Dunham 
et al. 2007).

Species concepts and species recognition

Species in Trechispora exhibit a wide range of hymenophore 
configurations with smooth as well as hydnoid and poroid 
representatives. The variable macromorphology contrasts 
with a strikingly uniform micromorphology with a combi-
nation of characteristics that make the genus well defined. 
Some of these features are a fragile context, presence of 
cords, ampullately widened septa in cords and subiculum, 
short-celled, richly branching subhymenial hyphae, and 
small, usually ornamented basidiospores with a rounded to 
ellipsoid outline (Larsson 1996). One remarkable charac-
ter is the ampullate septa, present on subicular hyphae and 
especially on some hyphae of the mycelial cords. Calcium 
oxalate crystals often adhere to the subicular hyphae, the 
morphology of which can be useful for species identification 
(Larsson 1994). There are some problems to delimit siblings 
among some Trechispora species. For example, T. farinacea 
is a variable species, even in the more restricted sense (Lars-
son 1995, 1996) it is still variable and may contain multiple 
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species. Trechispora farinacea s.s. has not been reported out-
side northern temperate areas, and biogeography may cur-
rently be the best way to separate it from similar tropical or 
subtropical relatives (Chikowski et al. 2020). Brevicellicium 
has investigated based on molecular data by Telleria et al. 
(2013). It is characterized by a corticioid habit, isodiametric 
subhymenial hyphae, short basidia, and smooth, often sub-
angular basidiospores with a distinct apiculus. It was phy-
logenetically recovered close to other Trechispora species. 
Another genus of corticioid fungi recently considered by 
molecular phylogeny is Subulicystidium, members of which 
are characterized by the subulate cystidia encrusted with 
rectangular crystals, and usually vermiform basidiospores. 
Usually, species in Subulicystidium have been delimited 
exclusively based on the size and shape of basidiospores. 
With the use of ITS and LSU, Ordynets et al. (2018, 2020) 
demonstrated a rather broad intraspecific variation in Subu-
licystidium species.

Conclusion and recommendations

As suggested by Chikowski et al. (2020), the ITS region 
is strongly variable within Trechispora and serves well as 
a species delimitation barcode. However, for phylogenetic 
approaches, it is too variable and sequences from alternative 
markers must be incorporated in multilocus reconstructions 
to elucidate the relationships among species of Trechispora 
and Scytinopogon. It is expected that many undiscovered 
species of Trechisporales reside in tropical and subtropical 
areas and the collecting efforts may consider these working 
areas (see, e.g., the recently described Trechispora hondu-
rensis; Haelewaters et al. 2020a). Usually is very difficult to 
get DNA from most of the species because of the thin basidi-
omata and pure cultures are often difficult to obtain. The 
use of morphological features alone is insufficient to dis-
criminate closely related species. More sequences, including 
from material from tropical areas, are required to construct 
a robust modern phylogeny of Trechisporales and to provide 
a good idea about species relationships.

Notes

We were unable to compile detailed information for the 
orders Auriculariales, Cantharellales, Hysterangiales, Phal-
lales, and Thelephorales. We refer to the following state-of-
the-art papers. For Auriculariales: Yan et al. (1999, 2002), 
Montoya-Alvarez et al. (2011), Looney et al. (2013), and 
Spirin et al. (2019). For Cantharellales: Olariaga et al. (2009, 
2017) and Buyck and Hofstetter (2011). For Hysterangiales: 
Elliott et al. (2020). For Phallales: Cabral et al. (2019) and 
Melanda et al. (2020). For Thelephorales: Ramírez-López 
et al. (2015), Vizzini et al. (2016a), Svantesson et al. (2019), 

and Nitare et al. (2021). In general, these orders follow the 
pattern that has emerged for other orders within Agaricomy-
cetes; an integrated or polyphasic approach is encouraged to 
successfully delimit taxa. In addition, increased sampling is 
needed from understudied areas of the world (e.g., Vizzini 
et al. 2016a, b; Cabral et al. 2019; Cheek et al. 2020).

Species delimitation in Bartheletiomycetes

Bartheletiomycetes is a monotypic class within Basidiomy-
cota, and probably the earliest-diverging class of Agarico-
mycotina (Mishra et al. 2018). The only species in the class, 
Bartheletia paradoxa, is characterized by a unique mixture of 
characteristics, some of which bear resemblance to the other 
two major groups of the Basidiomycota, Pucciniomycotina 
and Ustilaginomycotina (Scheuer et al. 2008). Bartheletia 
paradoxa grows on fallen leaves of a single species, Ginkgo 
biloba, throughout the winter. If the fungus is also present 
as an endophyte is currently unclear, even though anecdotal 
observations support this idea (Mishra et al. 2018). On the 
fallen leaves, sori of 0.1–2.0 mm develop in autumn, which 
produce a slimy mass of cream-colored yeasts similar in 
appearance to yeasts of smut fungi. After some time, pro-
duction of yeasts ends and dark brown to black teliospores 
develop in the sori, reminiscent of teliospores in Puccini-
omycotina. These teliospores oversummer and germinate in 
autumn to produce longitudinally septate phragmobasidia 
similar to other members of early-diverging Agaricomycotina 
(Scheuer et al. 2008). Bartheletia paradoxa is considered a 
“living fossil” and no close phylogenetic relatives are known.

Species concepts and species recognition

As Bartheletia paradoxa is the sole species in the class and 
can be easily recognized by the symptoms it causes on fallen 
leaves of its hosts, identification based macroscopic obser-
vation is possible. The sexual cycle apparently depends on 
infestation of the correct host (Scheuer et al. 2008); the fun-
gus can only be found on Ginkgo biloba leaves. This is an 
interesting observation because Ginkgo has a long history of 
cultivation and use as an ornamental tree around the world 
(Arnaud 1954; Kirschner and Okuda 2013).

Conclusion and recommendations

Bartheletia paradoxa has been a taxon of unclear affinity 
until phylogenomics revealed its isolated position (Mishra 
et al. 2018). Its recognition at class-level has thus far not 
been contested and is included at that rank in the latest Out-
line of Fungi and fungus-like organisms (Wijayawardene 
et al. 2020). Even though currently only a single species 
of Bartheletiomycetes is known, it is recommended that, if 
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only the yeast stage is visible on the Ginkgo biloba leaves, 
microscopy be done to ensure the presence of long and thin 
yeast cells, as other basidiomycetous yeasts may also form 
colonies on the leaves.

Species delimitation in Dacrymycetes

Dacrymycetes is a relatively small class within Basidi-
omycota, characterized by the earliest emergent type of 
brown wood rot (Floudas et al. 2015; Nagy et al. 2016). 
Most members develop gelatinous yellow-shaded basidi-
omata pigmented with carotenoids. The basidiomata are 
of pustulate-pulvinate, cupulate, dendroid, and spathulate 
shapes, except for Dacryonaema rufum with its synnema-
tous basidiomata and members of the genus Cerinomyces, 
which are recognized by a corticioid morphotype and arid 
or firm-gelatinous consistency. Microscopically, Y-shaped 
bisterigmate basidia effectively separate Dacrymycetes from 
other Basidiomycota. Unilacryma unispora is the only out-
lier; it develops unisterigmate basidia but otherwise features 
typical dacrymycetous morphology. The class comprises two 
orders (Dacrymycetales and Unilacrymales), four families 
(Cerinomycetaceae, Dacrymycetaceae, Dacryonaemataceae, 
Unilacrymaceae), 14 accepted genera (Arrhytidia, Calocera, 
Cerinomyces, Cerinosterus, Dacrymyces, Dacryomitra, 
Dacryonaema, Dacryopinax, Dacryoscyphus, Ditiola, Fem-
sjonia, Guepiniopsis, Heterotextus, Unilacryma), and at least 
120 species, connected to some of the ca. 400 species names 
published so far (Shirouzu et al. 2009; Oberwinkler 2014; 
Savchenko unpubl. data). In the class, generic definitions are 
historically based on macromorphological characters, such 
as shape and color of basidiomata. However, phylogenies 
have showed homoplasy of many traits used in genus delimi-
tation (Shirouzu et al. 2013; Zamora and Ekman 2020). For 
example, species with Calocera-like cylindrical basidiomata 
are scattered over Dacrymycetaceae and occur at least six 
non-sister clades (Shirouzu et al. 2017). Nevertheless, many 
species can be reliably identified with combined morpho-
logical and DNA data—even though generic destinations 
remain rather arbitrary.

Species concepts and species recognition

Species delimitation in the class center on a well-estab-
lished set of morphological criteria. Macroscopic charac-
ters include shape and color of basidiomata, presence of a 
stalk, orientation of hymenium, and degree of gelatiniza-
tion. Microscopic features include but are not limited to the 
presence and shape of clamp connections; wall thickness 
of subicular, subhymenial, and terminal hyphae; presence 
of sterile elements in hymenium (= hyphidia, traditionally 
called dikaryophyses); type of basidia; shape and septa-
tion of basidiospores; and presence and shape of conidia. 

Currently, new species are rarely proposed in Dacrymycetes 
without support of DNA sequences. The most commonly 
employed DNA markers are the ITS and LSU (e.g., Kirsch-
ner and Yang 2005; Shirouzu et al. 2009, 2017). The least 
variable rDNA regions, SSU and LSU, sometimes lack bar-
code qualities, but are widely used in phylogenies because 
they are easier to align compared to the ITS1 and ITS2 
spacer regions. Protein-coding genes such as rpb1, rpb2, and 
tef1 provide high resolution at species level, and also align 
well over distant taxonomic groups of the class, however, 
they are scarce in public sequence databases. Mitochondrial 
genes have only seldomly been used for species delimitation, 
but preliminary results are promising (Zamora and Ekman 
2020).

Other features used for species delimitation are substrate 
preferences and geographic distribution. Whereas associa-
tions with certain species of woody plants are not confirmed 
in Dacrymycetes, occurrence on coniferous and/or decidu-
ous wood is often a stable character. Preferences for condi-
tion or fraction of wood seems to be of importance but can-
not be verified with the thus far available data. Knowledge 
on geographic distribution facilitates identification—there 
are only few examples left of cosmopolitan species (e.g., 
Calocera viscosa, Dacryopinax spathularia). Other methods 
such as electron microscopy of hyphal septa, karyotic stud-
ies, and mating experiments are applied to Dacrymycetes 
but rarely extended to species-level taxonomy. For example, 
the number of nuclei in young basidiospores was shown to 
separate Cerinomycetaceae from the rest of the families (two 
vs. one nucleus), but this character does not distinguish any 
lower ranks (Zamora and Ekman 2020).

Conclusion and recommendations

Even though the character framework for polyphasic species 
delimitation is stable over the class, weight of the same traits 
may vary among groups, especially in aspects of morphol-
ogy. Generally, species with larger structures are allowed to 
have wider trait distributions (e.g., Femsjonia and related 
taxa), and species with smaller structures are defined by 
more conservative ranges (e.g., Cerinomyces). Potential 
conflicts between broad and narrow concepts can arise in 
groups with simple but highly variable morphologies, such 
as clamp-less members of Dacrymyces with three-septate 
basidiospores. Simultaneously, the order demonstrates high 
intragenomic polymorphism of the ITS region (Savchenko 
unpubl. data). Thus, over-reliance on a certain cutoff thresh-
old in ITS sequences can overestimate species richness. Such 
difficult cases are mostly unresolved and will require careful 
analyses and deliberated taxonomic decisions. True cryptic 
taxa are rare in the class; most species can be unambiguously 
identified by a combination of characters. Examination of 
multiple fresh samples, emphasis on microscopic characters, 
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and sequencing and analysis of multiple loci help to define 
accurate species limits. Dacrymycetes can be rare in nature, 
and descriptions based on a single specimen are often una-
voidable. In these cases, researchers must refer to existing 
literature and unsequenced taxa as to make sure that char-
acteristics of a newly proposed taxon do not overlap with 
previously described species.

Species delimitation in Tremellomycetes

Tremellomycetes (Agaricomycotina, Basidiomycota) 
includes more than 350 species in 71 genera (Wijayawardene 
et al. 2020) and encompasses a variety of fungi both in mor-
phology and lifestyle. The class includes anamorphic yeasts 
and dimorphic species that form hyphae or conspicuous 
macroscopic basidiomata (Hibbett et al. 2007; Boekhout 
et al. 2011; Liu et al. 2015a). Tremellomycetous fungi are 
ecologically heterogeneous, comprising saprotrophs, myco-
parasites, human pathogens, and lichenicolous fungi (Died-
erich 1996; Boekhout et al. 2011; Millanes et al. 2011; Weiss 
et al. 2014).

Species concepts and species recognition

Tremellomycetous species were conventionally identified 
based on morphological features and other phenotypic char-
acters, such as chemotaxonomic criteria and physiological 
properties (Bauer et al. 2006; Celio et al. 2006; Kurtzman 
et al. 2011). However, these methods proved insufficient to 
distinguish tremellomycetous species; the morphological 
species concept is not good for this group for the follow-
ing reasons. Tremellomycetes contains a large number of 
unicellular yeast taxa that have fewer morphological char-
acters. Furthermore, the microscopic fungi with fewer cells, 
such as yeasts, may have a slower rate of morphological 
change over time (Taylor et al. 2006a, b). Genetic isola-
tion can be detected ahead of recognizable morphological 
change; tremellomycetous taxa with similar morphologi-
cal characters often present nucleotide variation and com-
prise more than one (phylogenetic) species (Scorzetti et al. 
2002; Yurkov et al. 2015a). A portion of dimorphic fungi in 
Tremellomycetes often produce macroscopic basidiomata. 
Before the One Fungus One Name (1F1N) principle (Hawk-
sworth et al. 2011; Wingfield et al. 2012), the teleomorphic 
and anamorphic states used to be identified and named sepa-
rately based on their different morphology. Therefore, one 
species may have two different names based on morphology. 
Tests with mating compatible individuals are the key evi-
dence to identify biological species (Boekhout et al. 2021). 
However, the vast majority of tremellomycetous fungi are 

anamorphic taxa that lack a sexual stage (Liu et al. 2015a). 
For the teleomorphic, basidioma-forming fungi, the sexual 
stage might be difficult to cultivate in the lab. Basidiospores, 
however, can be cultured for some genera (Liu et al. 2015a). 
Though biological species recognition has been applied to 
Tremellomycetes (Boekhout et al. 2021), this approach is 
impractical for many taxa in the class.

Phylogenetic species recognition has been extensively 
used and an increasing number of new species have been 
introduced in Tremellomycetes using phylogenetic data. 
The D1/D2 domains of the LSU was initially examined and 
found to resolve closely related species for yeast species 
(Peterson and Kurtzman 1991). The LSU has been used as 
a stable marker for yeast species identification (Fell et al. 
2000). The ITS is often used to resolve species in conjunc-
tion with the LSU D1/D2 domains (Scorzetti et al. 2002). 
A comprehensive sequence database of these two genes for 
almost all known basidiomycetous yeast species has been 
developed (https:// theye asts. org/). It is feasible to rapidly 
delimit tremellomycetous fungi species based on this plat-
form. However, not all clades tested are strongly supported 
in rDNA trees, and protein-coding genes including rpb1, 
rpb2, and tef1 are often applied. The combination of rDNA 
with protein-coding genes exhibits the strongest support and 
best resolution for species delimitation of Tremellomycetes 
fungi (Liu et al. 2015b).

Not all species defined by phylogenetic analyses in 
Tremellomycetes have distinctive phenotypic characteristics 
when compared with sibling species. Ecology and environ-
ment preference should be considered as well to understand 
species limits. Species in the genus Goffeauzyma do not 
possess unique morphological or phenotypic characters, 
however, they can be seen as an ecoclade—species of this 
genus are limited to an acid aquatic environment (Gadanho 
and Sampaio 2009; Russo et al. 2010). Host specificity also 
can be considered in species delimitation when researching 
mycoparasitic taxa (Millanes et al. 2014), such as Tremella 
s.l. (Chen 1998).

Conclusion and recommendations

Not a single method can delimit tremellomycetous species 
thoroughly alone. It is recommended to use molecular phy-
logenetic data, morphological characters, chemotaxonomic 
and physiological properties, ecological information, and 
host specificity data as integrated criteria for Tremellomy-
cetes. For phylogenetic analyses, the LSU D1/D2 domains 
serves as the barcode marker for yeasts, and should be com-
bined with ITS and protein-coding genes (rpb1, rpb2, tef1) 
for accurate species delimitation in the class.

https://theyeasts.org/
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Species delimitation in Wallemiomycetes

The genus Wallemia, with type species W. ichthyophaga, was 
described by Johan-Olsen (1887) from salted fish. Almost 
a century later, von Arx (1970) synonimized the genus 
Sporendonema with Wallemia and introduced a new com-
bination, W. sebi, for the species Sporendonema sebi. Zalar 
et al. (2005) performed a first molecular phylogenetic study 
on Wallemia, based on SSU and ITS rDNA. In accordance 
to the concept of polyphasic taxonomy, based on the phy-
logenetic reconstruction of an ITS dataset and phenotypic 
characters (xerotolerance, morphology), W. ichthyophaga 
and W. sebi were recognized and W. muriae was proposed 
as a new combination for Torula epizoa var. muriae (Zalar 
et al. 2005). The genus currently contains eight species: W. 
ichthyophaga, W. muriae, W. sebi (Zalar et al. 2005), W. 
canadensis, W. mellicola, W. tropicalis (Jančič et al. 2015), 
W. hederae (Jancic et al. 2016a), and W. peruviensis (Díaz-
Valderrama et al. 2017). Wallemia species are found in eco-
logical niches with reduced water activity. They have been 
isolated from solar salterns; low-water activity  (aw) products 
such as high sugar and salt content foods; dust, urban, and 
indoor air; and agricultural environments (Zajc et al. 2011; 
Jančič et al. 2016b).

For nearly 100 years, the genus Wallemia had a special 
status in mycology. It was Terracina (1974) who intro-
duced it in Basidiomycota, primarily based on structures 
that resembled dolipores. Their uniqueness was the primary 
reason for the description of a new family Wallemiaceae, 
accommodating the genus Wallemia. Wallemiaceae was 
first placed in the order Filobasidiales (Moore 1996). Due 
to its unique phylogenetic position at the base of the Basidi-
omycota phylogenetic tree, in combination with its morphol-
ogy and xerotolerance, it was placed into newly described 
order Wallemiales and new class Wallemiomycetes (Zalar 
et al. 2005). Analyses of rDNA loci (SSU, ITS, LSU) and 
three protein-coding genes (rpb1, rpb2, tef1) reinforced the 
isolated position of the class Wallemiomycetes in Basidi-
omycota (Matheny et al. 2007). The class was assigned to 
Basidiomycota incertae sedis, reflecting ambiguity about 
its higher-level placement (Zalar et al. 2005; Matheny et al. 
2007). While a comparative phylogenomic analysis, based 
on 14 fungal proteomes, indicated that Wallemiomycetes 
is a 250 million-year-old sister group to Agaricomycotina 
(Zajc et al. 2013), the phylogenetic reconstruction of a six-
locus dataset (SSU, 5.8S, LSU, tef1, rpb1, rpb2) and a tree 
produced from amino acid data extracted from published 
genomes (115 taxa, 396 proteins) placed Wallemiomycetes 
in subphylum Wallemiomycotina (Zhao et al. 2017). Mishra 
et al. (2018), however, were unable to resolve whether Bar-
thelia or Wallemia is the first-diverging lineage in Agari-
comycotina—this study was also based on the analyses of 

genome sequences. In the genome-scale phylogeny of Fungi 
by Li et al. (2021), Wallemiomycotina was retrieved as sister 
to Agaricomycotina with strong support but Barthelia was 
not included in this analysis. Given the unresolved position 
of Barthelia + Wallemia at the base of Agaricomycotina, we 
follow a conservative approach and treat Wallemiomycetes 
as part of Agaricomycotina.

Species concepts and species recognition

Fungi of the genus Wallemia grow on solid media as small 
and very dusty colonies, due to the huge production of 
conidia (Zalar et al. 2005). Thus far, only production of 
asexual spores has been described (Padamsee et al. 2012). 
Wallemia displays a special form of conidiogenesis. It forms 
chains of blastic conidia. The fertile hypha becomes sep-
tated and separates into four cylindrical cells, which swell 
and disassemble. Although the sexual morphotype was not 
discovered yet, genomic analyses of W. ichthyophaga, W. 
mellicola, and W. sebi have identified genes related to sex-
ual reproduction (Padamsee et al. 2012; Zajc et al. 2013; 
Gostinčar et al. 2019; Sun et al. 2019).

The most informative loci for delimiting Wallemia species 
outside of the W. sebi complex are the SSU and ITS regions 
(Zalar et al. 2005; Jančič et al. 2015, 2016a, b). Within the 
W. sebi complex, species can be distinguished by addional 
loci, including Mcm7, rpb1, rpb2, pre-rRNA processing 
protein (Tsr1), and 3-phosphoadenosine-5-phosphatase 
(Hal2) (Jančič et al. 2015). Beside notable differences in 
DNA sequences, species of Wallemia are distinguished by 
conidial size, xerotolerance, halotolerance, chaotolerance, 
growth temperature regimes, extracellular enzyme activity 
profiles, and secondary metabolite patterns.

Conclusion and recommendations

Phylogenetic and phylogenomic studies support separation 
of species complexes into separate taxa. Species delimita-
tion in Wallemia can be supported by growth on media with 
lowered  aw—as one of the most xerophilic taxa in the entire 
fungal kingdom (Zajc et al. 2014a, 2014b). Species in Wal-
lemiomycetes are delimited based on differences in conidial 
size, tolerance to low  aw (xerotolerance), tolerance to NaCl 
(halotolerance), tolerance to  MgCl2 (chaotolerance), growth 
temperature range, physiological characteristics, and second-
ary metabolites (Jančič et al. 2015, 2016a).
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Subphylum Pucciniomycotina

Species delimitation in Agaricostilbomycetes

Agaricostilbomycetes currently comprises one accepted 
order (Agaricostilbales), five families (Agaricostilbaceae, 
Chionosphaeracea, Jianyuniaceae, Kondoaceae, Ruineni-
aceae), and at least 74 accepted species in 13 genera (Aime 
et al. 2014; Begerow et al. 2018; He et al. 2019; Li et al. 
2021). Members of Agaricostilomycetes are morphologi-
cally and ecologically diverse. Different phylogenetic studies 
have recovered long branches in Agaricostilbomycetes, prob-
ably reflecting the high degree of heterogeneity and thus far 
undiscovered diversity (Weiss et al. 2004; Bauer et al. 2006; 
Wang et al., 2015b).

Agaricostilbomycetes comprises teleomorphic, dimor-
phic, and anamorphic fungi, of which the latter are known 
only from an asexual yeast stage. Basidiomata are generally 
minute, ranging from stilboid (e.g., Chionosphaera,  Sterig-
matomyces, and Stilbum) to pustulate (e.g., Mycogloea nip-
ponica) (Oberwinkler and Bandoni 1982a; Bandoni 1998). 
In general, teleomorphic taxa in Agaricostilbomycetes 
are characterized by statismosporic, transversally septate 
basidia. Remarkable exceptions are the holobasidiate species 
of Chionosphaera (Kirschner et al. 2001b) and the ballisto-
sporic basidia of Kondoa spp. (only observed in culture). 
Mycogloea nipponica possesses basidia that become finally 
detached from their probasidia (Bandoni 1998; Kirschner 
et al. 2003).

Species of Agaricostilbomycetes have been isolated from 
various substrates and habitats: Agaricostilbum spp. from 
palm litter; Mycogloea nipponica in association with asco-
mycetous hosts on wood; Chionosphaera cuniculicola from 
bark beetle galleries in Picea logs; Cystobasidiopsis niren-
bergiae from soil; and Bensingtonia, Kondoa, and Myxari-
ophila spp. from basidiomata of other fungi (Oberwinkler 
and Bandoni 1982a; Bandoni 1998; Kirschner et al. 2001b; 
Bauer et al. 2009; Li et al. 2021). Many species are assumed 
to be mycoparasitic, although the interaction mechanisms 
between parasite and host remain unclear (Wang et  al. 
2015c; Oberwinkler 2017; Begerow et al. 2018).

Species concepts and species recognition

For teleomorphic and dimorphic taxa in Agaricostilbo-
mycetes, most species were traditionally described and 
delimited following the morphological species concept. 
Macro- and micromorphological characters were used, such 
as basidioma shape and texture, shape and dimensions of 
basidia, basidiospores, hyphae, and eventually other cells 
(e.g., conidia, haustoria). Sometimes, ultrastructural obser-
vations, culture characteristics, and ecological information 

were incorporated in species descriptions. Since the 2000s, 
sequence data are incorporated in species delimitation stud-
ies, in particular markers of the rDNA operon (Kirschner 
et al. 2001b, 2003; Bauer et al. 2009). Some of the tele-
omorphic species have been grown in culture, leading to 
new insights. For example, Kirschner et al. (2003) found that 
Mycogloea nipponica is the sexual stage of a representative 
in the yeast-genus Kurtzmanomyces.

Species delineation of yeast taxa comprises culture char-
acteristics such as colony morphology, micromorphology, 
type of division, and physiological characteristics. Currently, 
sequence data have become an important tool for species iden-
tification and delimitation. The work of Wang et al. (2015b, 
c) introduced an excellent seven-locus (SSU, ITS, LSU, rpb1, 
rpb2, tef1, cytb) reference dataset for most basidiomycetous 
yeasts, which has been used to delineate new species and 
higher taxa in Agaricostilbomycetes. Most recently, Li et al. 
(2021) described 18 new species, three new genera, and one 
new family in Agaricostilbomycetes, based on the phylogenetic 
reconstruction of a seven-locus dataset as well as an LSU D1/
D2 dataset, completed with physiological profiles and mor-
phological characterizations of all newly described species.

Conclusion and recommendations

Since Agaricostilbomycetes contain yeasts, filamentous 
fungi, and dimorphic fungi, different methodologies and spe-
cies concepts have been established for species delimitation. 
Delimitation of yeast species involves physiological profiles 
and biochemical characters, complemented with molecular 
phylogenetic reconstructions of multilocus datasets (ranging 
from the LSU D1/D2 up to seven loci). Species delimita-
tion of filamentous taxa involves morphological analyses of 
macro- and microcharacters, completed with phylogenetic 
analyses of ITS–LSU datasets. The seven-locus dataset from 
Wang et al. (2015b, c) may be used as reference dataset for 
new taxon discovery and species delimitation in the group. 
However, it is important to work integratively, also studying 
and comparing more traditional characters of teleomorphic 
and anamorphic fungi among different taxa. A challenge in 
the description of teleomorphic taxa is to obtain an eventual 
asexual yeast stage, and to integrate characters from sexual 
and asexual stages. Similarly, it is important to study the for-
mation of sexual structures in yeasts (Kirschner et al. 2003).

Species delimitation in Atractiellomycetes

Atractiellomycetes is a heterogenous group of fungi (Aime 
et al. 2018b) characterized by a synapomorphy at the ultra-
structural level: the symplechosomes. These structures 
are stacked plate-like cisternae, interconnected by hex-
agonally arranged filaments and sometimes connected to 
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mitochondria (Bauer and Oberwinkler 1991b; McLaughlin 
et al. 2017). However, their function is unknown and only 
few species have been investigated for their ultrastructural 
anatomy. Atractiellomycetes contains one order (Atractiella-
les), three families (Atractogloeaceae, Hoehnelomycetaceae, 
and Phleogenaceae), ten genera (Atractidochium, Atracto-
gloea, Basidiopycnis, Bourdotigloea, Helicogloea, Hobso-
nia, Phleogena, Proceropycnis, Saccosoma), and at least 58 
species (Aime et al. 2018b; Begerow et al. 2018).

Basidiomata of Atractiellomycetes range from corticioid 
over stilboid to pycnidioid. Basidia are typically transver-
sally septate; with or without laterally attached saccate 
probasidium; and with ballistospores, or statismospores 
in Atractogloea and Phleogena (Oberwinkler and Bandoni 
1982b). Some Helicogloea species have an asexual morph, 
formerly classified as Infundibura, Leucogloea, and Pleu-
rocolla (Kirschner 2004), whereas few other Atractiellomy-
cetes are known from asexual stages only, e.g., Procerop-
ycnis pinicola (Oberwinkler et al. 2006). The anamorphs of 
species are sporodochial or pycnidial; members of this class 
do not produce yeasts (Aime et al. 2014; Oberwinkler 2017).

The ecological niches of Atractiellomycetes species are 
heterogenous, and hint at a possibly large, yet undiscovered 
diversity. Species of Bourdotigloea, Helicogloea, and Sacco-
soma are presumed saprotrophs on plant material, and some 
have been reported to grow on or in hymenia of other fungi; 
Atractidochium hillariae was isolated as an endophyte of 
Pinus taeda needles; Atractiella rhizophila and Procerop-
ycnis hameedii were isolated as Populus root endophytes; 
Basidiopycnis hyalina and Proceropycnis pinicola were 
isolated from conifer samples infested with bark beetles; 
Phleogena faginea, an enigmatic stilboid fungus with stat-
ismospores, grows on decaying trunks and branches of vari-
ous deciduous tree species (Oberwinkler et al. 2006; Bonito 
et al. 2017; Aime et al. 2018b; Spirin et al. 2019).

Species concepts and species recognition

Since Atractiellomycetes comprises filamentous species 
only, species delimitation has traditionally been based on 
macro- and micromorphological analyses of basidiomata 
and microscopic structures. The largest group in this class 
are the resupinate corticioid species, characterized by later-
ally attached saccate probasidia (Baker 1936). Species with 
these characters were originally referred to two genera Heli-
cogloea and Saccoblastia. Subsequent species from various 
regions of the world were delimited mainly based on micro-
morphologcal analyses, including the shape and dimensions 
of hyphae, basidia, basidiospores, and cystidia when pre-
sent (Baker 1936, 1946; Wells 1990; Chen and Oberwinkler 
2000; Kirschner 2004; Schoutteten et al. 2018).

Due to a lack of sequence data of resupinate Atractiello-
mycetes, a first taxonomic treatment supported by molecular 

phylogeny was only published recently. Spirin et al. (2019) 
generated ITS and LSU sequences for many representatives of 
the resupinate Atractiellomycetes. Three genera were clearly 
delimited, supported by both molecular and morphological 
evidence (Bourdotigloea, Helicogloea, Saccosoma). The 
traditionally used morphological characters were generally 
consolidated as good characteristics; in most cases, spe-
cies can be identified by careful measurements of hyphae, 
basidia, and basidiospores. Other data such as geography and 
substrate seem to be good characters to distinguish species 
in some cases, although the current dataset is too limited to 
make sound conclusions (Spirin et al. 2019; Malysheva et al. 
2020). Most difficulties reside in the genus Bourdotigloea, 
where interspecific variability in rDNA sequences is limited 
(Spirin et al. 2019). Although species in this group are capa-
ble of growing in axenic culture (Schoutteten unpubl. data), 
only very few of them have been isolated in pure culture and 
physiologically characterized.

Several species from other genera of Atractiellomycetes 
have been described from cultures. These representatives 
are generally found on long branches in phylogenetic recon-
structions and have been isolated from various substrates. 
Sequence data for these representatives are generally lim-
ited to the rDNA loci (Oberwinkler et al. 2006; Bonito et al. 
2017; Aime et al. 2018b).

Conclusion and recommendations

The best studied lineage of Atractiellomycetes are the resu-
pinate taxa. Species delimitation has recently moved from a 
morphological concept to an integrative approach, incorpo-
rating morphology, phylogenetic reconstructions based on 
ITS and LSU, biogeography, and substrate. This lineage has 
been well-sampled in northern and western Europe, although 
these species occur in most parts of the world and much 
diversity remains to be discovered. Recent studies show that 
intraspecific morphological variability may be large (e.g., in 
Helicogloea sebacea; Malysheva et al. 2020). Further sam-
pling is needed to further test the set of characters currently 
used for species delimitation. Sequencing of more nuclear 
markers—including protein-coding genes—may prove help-
ful for species delimitation in challenging genera such as 
Bourdotigloea.

Species delimitation in Classiculomycetes

The class Classiculomycetes was erected by Bauer et al. 
(2006) to accommodate two species of aquatic mycopara-
sites: Classicula fluitans and the anamorphic Jaculispora 
submersa. Qiao et al. (2018) recently described a second 
species of Classicula from China. All species are charac-
terized by navicular conidia, a character shared with many 
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aquatic hyphomycetes. Classiculomycetes currently contains 
one order (Classiculales), one family (Classiculaceae), two 
genera (Classicula, Jaculispora) and three species (Begerow 
et al. 2018; He et al. 2019).

Species concepts and species recognition

The species concept used in this class integrates micromor-
phological characters with molecular phylogenetic infer-
ences, based on rDNA. Classicula fluitans was originally 
described as an anamorphic filamentous fungus (Naiadella 
fluitans) isolated from leaf litter in a stream in Canada 
(Marvanová and Bandoni 1987; Bauer et al. 2003). This fun-
gus is characterized by clamped hyphae, tremelloid hausto-
rial cells, and binucleate navicular conidia. Qiao et al. (2018) 
described C. sinensis from leaf litter in China. Following 
isolation in pure culture, the micromorphology of C. sinen-
sis was compared with C. fluitans, supported by molecular 
phylogenetic reconstruction. Regrettably, C. sinensis is only 
illustrated by a few pictures; neither detailed drawings nor 
ultrastructural observations were presented.

Conclusion and recommendations

Only few studies in this class have been published. Recent 
studies combine detailed micromorphological observations 
with phylogenetic reconstructions of rDNA datasets for 
species delimitations (Bauer et al. 2003; Qiao et al. 2018). 
Currently, our knowledge on the diversity of this class is 
limited to three species. The real species diversity may be 
much larger, especially given that freshwater ecosystems are 
a traditionally undersampled niche for fungi. Since these 
fungi have few morphological characters available for spe-
cies delimitation, it is important to perform detailed study of 
microscopic structures and to generate high-quality sequence 
data. The current understanding is that conidiogenesis and 
conidia are important characters for species delimitation. 
Basidia and basidiospores are important for delimitation 
in various fungal genera, which may be also true in this 
group. Efforts should be made to induce the formation of 
these structures in pure culture, as outlined in Bauer et al. 
(2003). Isolation of these fungi in culture also allows to 
generate sequence data. To date, most reference data are 
nuclear rDNA sequences. Future analyses incorporating the 
seven loci used by Wang et al. (2015b, c) may render more 
stable phylogenetic trees and improved support for species 
delimitation.

Species delimitation in Cryptomycocolacomycetes

Cryptomycocolacomycetes contains one order (Crypto-
mycocolacales), one familly (Cryptomycocolaceae), and 
two monotypic genera (Colacosiphon, Cryptomycocolax) 

(Begerow et al. 2018; He et al. 2019). The class was erected 
by Bauer et al. (2006) to accommodate two genera of myco-
parasites that interact with their hosts through colacosomes 
(Oberwinkler and Bauer 1990; Kirschner et  al. 2001a). 
The phylogenetic clustering of Colacosiphon filiformis and 
Cryptomycocolax abnormis is also supported by morphol-
ogy and ultrastructural characters. Reproductive organs 
are rather atypical compared to other Basidiomycota. The 
sporogenous cells are long, aseptate or septate, and giving 
rise to a various number of sessile spores. In Cryptomyco-
colax, meiosis has been observed in the sporogenous cells, 
which were consequently interpreted as basidia. The sporog-
enous cells in Colacosiphon are of dubious nature and have 
been tentatively interpreted as conidiophores. At the ultras-
tructural level, the septal pores are surrounded by Woronin 
body-like microbodies. Two types of colacosomes have been 
observed in the class (Bauer 2004). Thus far, only partial 
LSU sequences are available for these species—impeding a 
stable molecular-based classification for the class.

Species concepts and species recognition

Cryptomycocolax abnormis was described as a slimy layer 
growing on small ascomata on decaying Cirsium plant rem-
nants (Asterales, Asteraceae) in Costa Rica. Colacosiphon 
filiformis was found in co-culture with an ascomycetous 
host derived from bark beetle galleries in Pinus sylvestris 
(Pinales, Pinaceae) in Germany. Both species differ in the 
production of basidiomata, presence or absence of clamps, 
reproductive organs, and the types of colacosomes. Descrip-
tion and delimitation of species require detailed macro- and 
micromorphological observations, including ultrastructural 
details. Co-cultivation of host and mycoparasite may be 
helpful for these observations and to obtain enough mate-
rial for molecular work.

Conclusion and recommendations

Cryptomycocolacomycetes contains only two representa-
tives, but they show a significant amount of variation in mor-
phology, ultrastructure, and ecology. A large phylogenetic 
distance is observed between these species—although this 
was just based on partial LSU (Bauer et al. 2006). Com-
parison of homologous reproductive organs is often used 
for species delimitation in Basidiomycota, although it is not 
always easy or possible to interpret the sexual or asexual 
nature of these structures, especially in this class. The true 
diversity within the class is likely much larger than currently 
known. The description and delimitation of new taxa involve 
detailed observations of macro- and micromorphological 
characters and investigation of ultrastructural characters, 
either based on basidiomata or (co-)cultivation assays. Cau-
tion is in order when interpreting reproductive organs, as 
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basidia may be of deviating shape compared to other Basidi-
omycota, and confusion with asexual structures might be 
possible. Efforts should be made to sequence multiple mark-
ers for phylogenetic-based species delimitation.

Species delimitation in Cystobasidiomycetes

The class Cystobasidiomycetes was erected by Bauer et al. 
(2006) to accommodate yeast species and a few dimorphic 
fungi, mostly presumed mycoparasites. The class contains 
three orders (Cystobasidiales, Erythrobasidiales, Naohide-
ales), eight families (Buckleyzymaceae, Cyphobasidiaceae, 
Cystobasidiaceae, Erythrobasidiaceae, Microsporomyceta-
ceae, Naohideaceae, Sakaguchiaceae, Symmetrosporaceae), 
fifteen genera (Bannoa, Begerowomyces, Buckleyzyma, 
Cyphobasidium, Cyrenella, Cystobasidium, Erythroba-
sidium, Halobasidium, Hasegawazyma, Naohidea, Micro-
sporomyces, Occultifur, Robertozyma, Sakaguchia, Sym-
metrospora), and at least 53 species (Wang et al. 2015c; 
Yurkov et al. 2015b; Begerow et al. 2018; He et al. 2019; 
Li et al. 2021). A synapomorphic feature of Cystobasidi-
omycetes taxa is the lack of fucose in the cell wall carbohy-
drates. Dimorphic genera include Bannoa, Cystobasidium, 
Naohidea, Occultifur, and Sakaguchia. Some filamentous 
taxa are assigned to the genus Cystobasidium based on mor-
phological features—thick-walled probasidia, giving rise 
to thin-walled transversely septate basidia—but no efforts 
have been made to isolate these species in pure culture (e.g., 
Martin 1939; Olive 1952). Bannoa and Erythrobasidium 
produce holobasidia, whereas other dimorphic species have 
transversally septate basidia. Mycoparasitic interactions 
of Cystobasidium, Naohidea, and Occultifur are enabled 
by tremelloid haustoria forming nanopores at the contact 
surface. Cystobasidiomycetes representatives have been iso-
lated from various habitats, including other fungi, lichens, 
phylloplanes (leaf surfaces), bronchial tissues, beetle guts, 
soil, freshwater habitats, marine habitats, sea sponges, and 
air (Olive 1952; Oberwinkler 1990; Wang et al. 2015b, c; 
Yurkov et al. 2015b; Millanes et al. 2016; Begerow et al. 
2018; Haelewaters et al. 2020b; Li et al. 2021).

Species concepts and species recognition

Description and delimitation of dimorphic taxa in Cystoba-
sidiomycetes require detailed observations of macro- and 
micromorphological structures, including basidiomata, 
basidia, basidiospores, hyphae, conidia, and haustoria 
(Oberwinkler 1990; Millanes et al. 2016). Most species have 
been described based on morphological data; sequence data 
have been generated only for a few species. Yeast species 
description and delimitation require culturing of the fungus, 
description of colony- and cell morphology, physiological 

characteristics, and molecular phylogenetic analyses (Haele-
waters et al. 2020b; Li et al. 2021).

Conclusion and recommendations

Different criteria have been applied for species delimitation 
in Cystobasidiomycetes: morphology for dimorphic taxa, 
and culture morphology and physiological characteristics 
for yeast taxa. Currently, an integrative approach is in use, 
combining independent evidence from molecular phyloge-
netic analyses along with the more traditional characters 
mentioned above. Cystobasidiomycetes comprises both 
dimorphic species and species only known as asexual yeast 
stages. Several dimorphic species have been described based 
on morphological data only, and sequence data are avail-
able for few species only. Efforts should be made to isolate 
dimorphic species in pure culture, to describe the asexual 
yeast stage, and obtain sequence data of multiple loci.

Species delimitation in Microbotryomycetes

Microbotryomycetes comprises seven orders (Heitmaniales, 
Heterogastridiales, Kriegeriales, Leucosporidiales, Micro-
botryales, Rosettozymales, Sporidiobolales), eleven families 
(Camptobasidiaceae, Chrysozymaceae, Colacogloeaceae, 
Heitmaniaceae, Heterogastridiaceae, Kriegeriaceae, Leu-
cosporidiaceae, Microbotryaceae, Rosettozymaceae, Sporid-
iobolaceae, Ustilentylomataceae), 44 genera, and about 300 
species (Wang et al. 2015c; Begerow et al. 2018; Denchev 
et al. 2019, 2020; He et al. 2019; Kemler et al. 2020; Li 
et al. 2021). It is a diverse class, containing mycoparasites, 
plant parasites, and saprotrophic yeasts with largely distinct 
ecological, morphological, and ultrastructural features. Most 
representatives are dimorphic, although many species are 
known only from a yeast stage. Only a few taxa are known 
exclusively as filamentous fungi. The majority of parasitic 
species alternate between haploid yeasts, which are some-
times called sporidia, and a dikaryotic hyphal stage. The dip-
loid stage is (very) short-lived and generally only observed 
right before the formation of basidia. In general, parasit-
ism is initiated after somatogamy of two haploid gametes 
of compatible mating type to form infectious hyphae. The 
haploid gametes can proliferate as yeasts, and it is assumed 
that species that exist only as yeasts are derived.

The class Microbotryomycetes was erected to accom-
modate a heterogenous group of organisms and is only 
phylogenetically well supported (Bauer et al. 2006). No 
synapomorphic morphological character has been found. 
Morphologically, basidiomata vary from stilboid and 
pycnoid forms, and the class includes parasitic fungi that 
do not form their own basidiomata but rather grow in or 
between tissues of their host species. Plant-parasitic species 
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in Microbotryales produce macroscopic sori in species-
specific tissues of their host plants (Kemler et al. 2020). 
Basidia are generally transversely septate, producing bal-
listosporic basidiospores. Some species produce conspicu-
ous conidiophores and conidia (e.g., in Colacogloea and 
Krieglsteinera). Some taxa have unique structures, such as 
the conspicuous multirooted basidiophores in Krieglsteinera 
lasiosphaeriae, or large, tetrahedral basidiospores in Hetero-
gastridium pycnoideum.

At the ultrastructural level, various yeasts and myco-
parasites are characterized by the presence of colacosomes, 
also referred to as lenticular bodies (Bauer and Oberwinkler 
1991a). Colacosomes of Microbotryomycetes seem to have 
a different ontogeny and content than those of Cryptomyco-
colacomycetes (Bauer et al. 2004; Oberwinkler et al. 2017). 
The diversity of colacosome-forming Microbotryomycetes 
is large, comprising asexual yeasts (e.g., Sporobolomyces 
johnsonii), filamentous fungi (e.g., Heterogastridium pyc-
noideum), and dimorphic fungi (e.g., Colacogloea effusa). 
The two major ecological strategies in the class are myco- 
and phytoparasitism, of which mycoparasitism is phyloge-
netically more widespread and likely represents the ancestral 
ecological strategy of the class. Thus far, it remains difficult 
to infer ecological functions of asexual yeast species.

Mating initiation in plant parasites is controlled by a 
pheromone–pheromone–receptor system with two mating 
types (MAT A1 and MAT A2). Although not experimentally 
shown, genome analyses indicate that subsequently homeo-
domain transcription factors mediate a successful dikaryoti-
zation (Branco et al. 2018). After successful mating, infec-
tious hyphae are produced in the plant parasitic species that 
infect their host via an appressorium through the epidermis 
(Schäfer et al. 2010). Although many population studies 
support clearly separated species, hybrids between closely 
related species are observed in nature (Petit et al. 2017). 
Hybrids can also be producted in culture under laboratory 
conditions, but their infection rate is apparently markedly 
reduced (Büker et al. 2020).

Species concepts and species recognition

New species within the class Microbotryomycetes are 
mainly described based on molecular phylogenetic data. In 
the case of parasitic species, host information is also often 
used as a separate lineage of evidence. Yeast species are 
often described with additional physiological data in the 
form of assimilation studies. Species delimitation within 
the class varies between the three major functional groups:

Yeasts Species delimitation of organisms exclusively 
known as asexual yeast-forming fungi is mainly based on 
an integrative approach incorporating physiological charac-
teristics, multilocus phylogenetic inferences, and morpho-
logical data (e.g., Wang et al. 2015c; Li et al. 2021). For 

unambiguous species assignment, ITS and LSU loci remain 
the most important genetic markers.

Phytoparasites For plant parasitic species, macromor-
phological traits include sorus location, formation of a 
columella, and spore mass coloration. Microscopic charac-
teristics include teliospore size, teliospore ornamentation, 
and formation of disjunctors between teliospores. Hyphal 
growth of plant-parasitic species is intercellular and specific 
interaction structures are unknown. An important aspect for 
plant-parasitic species is host data. Host specificity as a char-
acteristic for species delimitation in the Microbotryaceae—
especially in the genus Microbotryum—has been debated 
for quite some time. Recent molecular phylogenetic work 
demonstrates that host specificity is very high. Therefore, 
most recent species descriptions in the family are not based 
on the discovery of new material, but on the recognition 
that most species previously thought to have a broad host 
spectrum, actually contain many cryptic species. However, 
there are exceptions: Microbotryum anther smuts on Car-
yophyllaceae hosts (Caryophyllales) have a generally very 
high host specificity. Yet, just a few Microbotryum species 
parasitize several dozens of Dianthus species (Caryophyl-
lales, Caryophyllaceae) (Refrégier et al. 2008; Denchev et al. 
2009; Kemler et al. 2013).

Mycoparasites Delimitation of mycoparasitic taxa in this 
class is mainly based on a morphological species concept, 
involving detailed observations of micromorphological 
structures, including the shape and dimensions of basidia, 
basidiospores, conidiophores, conidia, and hyphal system, as 
well as the presence or absence of clamps (Hauerslev 1993; 
Bandoni et al. 2002). Basidiomata of mycoparasites are 
highly variable, and various species have lost the capability 
to form their own basidiomata. These species rather grow 
between the tissues of their host fungus and are referred to 
as “intrahymenial” Basidiomycota. Information about host 
species identity has not been used consistently for species 
delimitation—it remains unclear to what extent mycopara-
sites of Microbotryomycetes are host specific. Sequence data 
are available for few species only and consequently have 
only been used sporadically in species descriptions (e.g., 
Toome and Aime 2014).

Oberwinkler et al. (1990) proposed the genus Colaco-
gloea for Platygloea peniophorae based on the detection 
of colacosomes. Subsequently, various mycoparasites that 
were found to produce colacosomes were combined or newly 
described in this genus. However, none of these studies were 
(originally) supported by sequence data, and decisions were 
made based on morphological features alone (Kirschner 
et al. 2000; Bandoni et al. 2002). Recently, several species 
exclusively known as a yeast stage were assigned to this 
genus based on molecular phylogenetic reconstructions 
(Wang et al. 2015c; Li et al. 2021).
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Conclusion and recommendations

Currently, different species concepts are being applied in 
Microbotryomycetes; this generally depends on the func-
tional group that is being studied (integrative species con-
cepts in yeasts and plant parasites vs. a mainly morphologi-
cal species concept in mycoparasites). Species delimitation 
in asexual yeasts is based on the integration of molecular 
sequence data, morphological data, and physiological char-
acteristics, whereas species delimitation of plant parasites 
involves morphological, ecological, and host information, 
supported by molecular phylogenetic inferences. Finally, 
species delimitation of mycoparasites has traditionally 
been based on (micro-)morphological characters, some-
times combined with host species information. Datasets of 
morphology, ecology, and sequence data are currently too 
fragmentary among the major functional groups of Micro-
botryomycetes, to be able to establish criteria for a class-
wide species concept. An integrative approach for species 
delimitation incorporating genomic data and detailed obser-
vations on morphology and ecology is paramount to improve 
our insights in Microbotryomycetes diversity.

Species delimitation in Pucciniomycetes

Pucciniomycetes is by far the largest class of Pucciniomyco-
tina, containing over 8000 species (Aime et al. 2014). The vast 
majority of them belong to Pucciniales, the order that exclu-
sively contains the obligate plant-parasitic rust fungi. Species 
of Pucciniales are most commonly found in their uredinio-
spore stage which re-infects the host during the growth sea-
son. Rust fungi usually form yellow, orange, or brown pus-
tules on leaves, stems, and fruits, giving the infected areas 
rust-like appearance. However, some species can also induce 
gall formation, deformed plant growth, and even pseudoflow-
ers (Cummins and Hiratsuka 2003). The other members of 
Pucciniomycetes are morphologically different from rusts, but 
most of them are parasitic—infecting mosses, scale insects, 
fungi. Members of Septobasidiales form dense fungal mats on 
scale insects; Platygloeales form minute fruiting structures on 
mosses and ferns; and Helicobasidiales form fungal mats on 
tree roots and they parasitize rust fungi. The monotypic Pach-
nocybales is the only order that is known to be saprotrophic 
but further studies are needed to unveil the diversity in this 
group and better understand their biology (Aime et al. 2014).

While some of the morphological characters (e.g., size and 
shape of teliospores and spermogonia) are considered useful 
characteristics for genus- and species-level identification of 
some rust fungi, other spore stages, or host association, are not 
always informative. This has led to more than 17,000 species 
and over 2000 subspecies names in MycoBank (https:// www. 
mycob ank. org), many of which are considered taxonomic syn-
onyms. While navigating all these names can be confusing, 

determining the correct name is crucial in Pucciniomycetes 
as many rust fungi are economically or ecologically impor-
tant plant parasites. The use of different names for the same 
species and unresolved taxonomic treatments may result in 
delayed decision-making and management, and ultimately in 
missed opportunity for prompt actions.

Species concepts and species recognition

For the identification of species of Pucciniomycetes, host 
information is the most important character, followed by teli-
ospore morphology. Spore morphology is the primary char-
acter to delimit species of Pucciniomycetes, whereas sorus 
morphology is used to delimit higher taxa (e.g., Couch 1938; 
Cummins and Hiratsuka 2003; Aime et al. 2014). However, 
the application of morphology is challenging as it is mostly 
based on simple characters that often overlap (Liu et al. 
2013; Savchenko et al. 2014a, b; McTaggart et al. 2016; 
Demers et al. 2017). Also host range alone is insufficient for 
species delimitation; morphological and molecular phyloge-
netic evidence have led to expanding the host range of given 
species (Ebinghaus et al. 2018) but also the opposite—split-
ting taxa thought to have a broad host range into species par-
asitizing single hosts (Berndt 2011; McTaggart et al. 2015b). 
DNA barcoding and phylogenetic methods are very much 
used in an integrative approach to delimit species nowadays 
(e.g., Tian et al. 2004; Zhao et al. 2015; Ebinghaus et al. 
2018; Léveillé-Bourret et al. 2021). Since it can be challeng-
ing to obtain sequence data from old herbarium specimens, 
epitypification from fresh collections and thorough molecu-
lar studies of all materials (especially of the ones with few 
morphological characters) is essential for accurate species 
delimitation and recognition in Pucciniomycetes.

Although it has been used for species delimitation of some 
groups (Weber et al. 2002; Szabo 2006; Chatasiri et al. 2006; 
Alaei et al. 2009), the ITS region is not an effective barcode 
for rust fungi; intra-specific and intra-individual variation 
are observed in a wide range of taxa potentially misleading 
identification, but it is also difficult to amplify without rust-
specific primers and the presence of indels inhibits direct 
sequencing (McTaggart and Aime 2018). The LSU has been 
used as an alternative barcode for rust fungi instead, alone or 
with other markers (e.g., Bennett et al. 2011; McTaggart et al. 
2015a; Maier et al. 2016; Ebinghaus et al. 2018). Depending 
on the genus, different barcodes may provide better species 
resolution (see discussion in Bubner et al. 2019). McTag-
gart and Aime (2018) wrote for Coleosporium that the ITS2 
spacer region may vary where LSU is unable to differentiate 
among species. The authors proposed the use of the combined 
ITS2–LSU rDNA region to resolve species complexes and 
provide species-level identifications for rust fungi. Finally, it 
may be possible that new barcodes be developed based on the 
generation of genome scale data (Aime et al. 2018a).

https://www.mycobank.org
https://www.mycobank.org
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Conclusion and recommendations

Examination of morphological characters is still important 
in Pucciniomycetes, especially for the rust fungi because 
the vast majority of rust species have not been sequenced. 
As a result, the lack of matches in DNA sequence databases 
does not mean that a given fungus represents an undescribed 
species, and careful examination of earlier records of rusts 
from the same host species needs to be performed. For both 
genus- and species-level delimitation, phylogenetic recon-
structions of various loci of ribosomal and mitochondrial 
DNA are often conducted (e.g., Vialle et al. 2013; McTag-
gart et  al. 2015a; Doungsa-Ard et  al. 2018). Thorough 
molecular revisions are needed at the species level, based 
on phylogenetic analysis of the ITS2–LSU region (McTag-
gart and Aime 2018) and in combination with secondary 
barcodes, as some studies of rust fungi have uncovered a 
great number of species complexes and cryptic species. For 
example, analyses of the Melampsora epitea complex from 
northwestern North America determined the existence of 14 
different phylogenetic species (also termed “phylotypes”) 
within this single morphospecies (Bennett et al. 2011) and 
studies within the Endoraecium digitatum (Berndt 2011) 
and Dasyspora gregaria (Beenken et al. 2012) species com-
plexes have revealed similar patterns of cryptic speciation. It 
is recommended to evaluate the suitability of already exist-
ing names when describing new species. This is one of the 
challenges that researchers who work with rust fungi need to 
face because often the type collections are in poor condition 
or present only few morphological characters. Moreover, 
since the DNA extractions from old herbarium specimens 
of rust fungi have a low success rate, it might be impossible 
to obtain DNA sequences for certain types.

Species delimitation in Spiculogloeomycetes

Spiculogloeomycetes was established by Wang et al. (2015c) 
based on a seven-locus phylogenetic reconstruction of Puc-
cinomycotina. This relatively small class contains intrahy-
menial dimorphic mycoparasites of the genus Spiculogloea 
and anamorphic yeasts mainly of the Sporobolomyces 
subbrunneus group. The class contains one order (Spicu-
logloeales), one family (Spiculogloeaceae), three genera 
(Meniscomyces, Phyllozyma, and Spiculogloea), and at least 
15 species (Begerow et al. 2018; He et al. 2019; Li et al. 
2021).

Species concepts and species recognition

The genus Spiculogloea was described to accommodate S. 
occulta, an intrahymenial parasite of Hyphoderma argilla-
ceum (Polyporales, Meruliaceae) from Mallorca (Roberts 

1996). This species is characterized by transversally sep-
tate basidia covered with small spicules that emerge from 
small, ornamented probasidia, the presence of conidia, and 
clamped hyphae. Interaction with the host is made through 
tremelloid haustoria, which form nanopores at the con-
tact surface. Four more mycoparasitic species have been 
described within Spiculogloea from various host species 
(Hauerslev 1999; Roberts 1997; Trichiès 2006; Schoutteten 
et al. 2018). Species of Spiculogloea do not produce basidi-
omata and all have ornamented, transversally septate basidia. 
Species delimitation is based on shape and dimensions of 
micromorphological characters—mainly basidia, basidi-
ospores, and conidia. Langer and  (1998) reported a yeast 
stage for S. occulta. Sequence data are not available for any 
of the filamentous species; they are placed tentatively in 
Spiculogloea based on basidium morphology.

Yeast taxa are described and delimitated based on 
molecular phylogenetic data (mainly based on ITS and LSU 
sequences) and physiological characteristics. Following this 
approach, Wang et al. (2015c) recognized five yeast spe-
cies of the Sporobolomyces subbrunneus group as members 
of the class based on their seven-locus dataset and, conse-
quently, established the genus Phyllozyma to accommodate 
this lineage within Spiculogloeomycetes. Li et al. (2021) 
described two new yeast species of Phyllozyma as well as 
Meniscomyces layueensis, all isolated from phylloplanes 
collected in China.

Conclusion and recommendations

Since the overlap in available data among dimorphic myco-
parasites and anamorphic yeast species in the class is mar-
ginal, there is no class-wide consensus with regard to species 
delimitation. The filamentous mycoparasites are delimited 
morphologically, based on characteristics of microscopic 
structures. The description and delimitation of anamor-
phic yeast species is based on the integration of multiple 
features—molecular phylogenetic reconstructions, physi-
ological characteristic, and cell- and colony morphology. To 
bridge the gap between the available data for filamentous vs. 
yeast taxa in Spiculogloeomycetes, efforts should be made 
to culture putative new species of dimorphic mycoparasites. 
The yeast stage can be used for sequencing and should be 
described following standard procedures (with cell- and 
colony morphology and physiological characteristics). It 
is advisable to sequence the seven loci from Wang et al. 
(2015b, c), because this study presents the best multilocus 
reference dataset of Spiculogloeomycetes to date.

Species delimitation in Tritirachiomycetes

The genus Tritirachium was described by Limber (1940) to 
accommodate three species, T. album, T. dependens (type), 
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and T. spicatum. These fungi were at that time classified as 
Ascomycota in the presently obsolete class Hyphomycetes. 
Species in the genus are characterized by the presence of 
long, erect to recumbent, verticillately branched conidio-
phores with somewhat subulate terminal branches that taper 
in a distinct zig-zag rachis at which one-celled conidia are 
formed. Tritirachium cinnamomeum was described by van 
Beyma thoe Kingma (1942), and T. brumpti was described 
based on an isolate from an infected eye of a European girl in 
Egypt (Langeron 1947). After morphological study, de Hoog 
(1972) proposed that only two species should be included 
in the genus, T. dependens and T. oryzae, under which T. 
brumptii was considered a synonym. Later, he accepted 
T. cinnamomeum and T. isariae (de Hoog 1973). Beguin 
(2010), still only using morphological, physiological, and 
ecological data, described T. egenum to accommodate a 
biotrophic mycosymbiont growing in close association with 
Penicillium rugulosum. Interestingly, this species could ini-
tially not be grown in axenic culture, but using a hot water 
extract of Alternaria alternata allowed growth in vitro.

A major contribution was made by Schell et al. (2011), 
who generated the first sequence data for Tritirachium. Using 
a dataset of SSU, ITS, LSU, rpb2, and tef1 sequences, the 
authors discovered that Tritirachium did not belong to Asco-
mycota, but rather to Basidiomycota. Based on the genetic 
distances observed in the phylogenetic trees, Schell et al. 
(2011) concluded that the genus should be interpreted to rep-
resent class Tritirachiomycetes, order Tritirachiales, family 
Tritirachimycetaceae. The authors found that the morpho-
logical species concept did not accurately circumscribe spe-
cies boundaries and, hence, they used a phylogenetic species 
concept recognizing six species: T. dependens, T. oryzae, T. 
roseum, T. cinnamomeum, and two undescribed species that 
still need to be described. Tritirachium egenum was consid-
ered a synonym of T. dependens (Schell et al. 2011). Beguin 
et al. (2012) studied sequence divergence of the SSU and 
found that T. egenum is phylogenetically sister to T. oryzae, 
distinct from T. dependens. The differences between the 
results of Schell et al. (2011) and Beguin et al. (2012) are 
difficult to comprehend and need further investigation. The 
position of these fungi as a class in Pucciniomycotina was 
confirmed by Manohar et al. (2014) by multilocus phyloge-
netic analysis. These authors also described T. candoliense 
isolated from an anoxic zone in the Arabian Sea. Manohar 
et al. (2014) also compiled the morphological differences 
among the five accepted species at that time and they could 
be discriminated. Finally, Bezerra et al. (2020) described T. 
batistae based on ITS, LSU, and rpb2 sequences. Thus far, 
most isolates of Tritirachium originated from plant materi-
als, but also from clinical and marine habitats, including 
sponges.

Using SSU sequence data, Beguin et al. (2012) described 
Paratritirachium, a genus with a sister relationship to Tri-
tirachium. Paratritirachium at that time contained only 
one species, namely P. cylindroconium that previously was 
classified in Nodulisporium, a representative of anamorphic 
Xylariales (de Hoog 1973). Nguyen et al. (2014) added a 
second species to the genus, P. curvibasidium, for a heat-
resistant fungus isolated from flare pit spoils in Canada. This 
paper describes for the first time a sexual state in Tritirachio-
mycetes. Basidiomata and clamp connections are absent, but 
unfused clamp connections occur. Curved basidia originate 
directly on the hyphae after 1 week of inoculation, and they 
are pale brown, thick-walled, with oval basidiospores formed 
on short sterigmata. Hyphae are binuclate and the basidi-
ospores uninucleate (Nguyen et al. 2014).

Species concepts and species recognition

Within Tritirachiomycetes the phylogenetic species concept 
confirmed previously recognized morphologically recog-
nized species, as well as new species. GCPSR has recently 
be employed to delimit species. Markers used thus far, both 
for species delimitation studies and higher taxonomic level 
relationships, include SSU, ITS, LSU, rpb2, and tef1.

Conclusion and recommendations

Tritirachiomycetes was only recently recognized as a class 
in Basidiomycota. The class includes only two genera with 
eight formally described species. Two undescribed spe-
cies have been identified in the literature and await formal 
description. Likely, our knowledge on the biodiversity of 
the class is limited, given that species have been isolated 
from many habitats in many regions on the planet. Likely, 
species of Tritirachiomycetes also occur in indoor environ-
ments and may pose a risk for human health. Sampling in 
extreme, heat, and dry environments is proposed in enrich-
ing the diversity within this class.

Subphylum Ustilaginomycotina

Species delimitation in Exobasidiomycetes

The class Exobasidiomycetes comprises about 650 species 
in 56 genera, 21 families, and nine orders (Ceraceosorales, 
Doassansiales, Entylomatales, Exobasidiales, George-
fischeriales, Golubeviales, Microstromatales, Robbauer-
ales, Tilletiales) (Wang et al. 2015a; Begerow et al. 2018; 
Kijpornyongpan et al. 2018; He et al. 2019). Most of the 
members are known to be plant-parasitic, but some lineages 
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comprise insect-associated species and species with unclear 
ecology. The genus Tilletiopsis was used to describe the 
asexual and saprotrophic yeast species isolated mainly from 
plant surfaces (Begerow et al. 2000). However, the genus 
Tilletiopsis turned out to be polyphyletic and meanwhile 
several lineages have been described as individual genera 
(Wang et al. 2015a; He et al. 2019).

Species concepts and species recognition

Genera in Exobasidiomycetes, including Entyloma, Doas-
sansia, and Tilletia, have always been considered typical 
smut fungi and species delimitation in these genera has fol-
lowed the same approach as for parasitic genera in Ustilag-
inomycetes (see below). A morphological species concept 
combined with an ecological species concept—focusing on 
host specificity—is prevalent for species delimitation. As 
morphological traits are often limited, different authors often 
make their own interpretations and several attempts have 
been made to lump or split species of Exobasidium (e.g., 
Döring and Blanz 2000; Begerow et al. 2002). In most line-
ages, however, only very few species are sampled regularly, 
and trait variation from different collections within the area 
of distribution has been rarely studied. Therefore, molecular 
phylogenetic data have become the main source of species 
recognition nowadays. ITS is used as the barcode marker to 
distinguish among species (Begerow et al. 2014).

A mating system similar to that of Ustilago and related 
species appears to have emerged in Exobasidiomycetes 
(details below) and the orthologues of two mating loci 
could be identified in the various genomes. However, com-
prehensive analyses of the genomes and mating experiments 
supporting biological species based on intersterility are still 
lacking.

Conclusion and recommendations

The monograph of smut fungi by Vanky (2011), including 
five of nine orders, and the morphological species con-
cept used therein was mostly supported by phylogenetic 
approaches. Animal-associated asexual species in Exobasidi-
ales could only be included based on molecular data. Line-
ages like Ceraceosorales, Golubeviales, and Robbauerales 
are only known with very few asexual species and accepted 
based on long branches. Thus, delimitation in Exobasidi-
omycetes is as diverse as the group itself. The extensive use 
of ITS and LSU—as the most relevant markers—provides 
a comprehensive dataset. However, some closely related 
species like the economically important Tilletia species on 
barley, wheat, and rye will need more detailed studies to 
accurately distinguish among species. In addition, these spe-
cies groups hint at a much higher diversity than anticipated 
by phenotypic data alone.

Species delimitation in Malasseziomycetes

The class Malasseziomycetes contains one order (Malassezi-
ales), one family (Malasseziaceae), and one genus, Malasse-
zia. This genus was described by Baillon (1889) and initially 
only two species were recognized, the lipid-dependent M. 
furfur (type) and the lipophilic M. pachydermatis. The mor-
phological hallmark of the genus Malassezia is the unique 
unipolar mode of budding in which buds emerge only at 
one pole of the cell with the new bud cell walls erupting 
through the original cell wall of the yeast cell, leaving 
(rather) prominent bud scars. Several buds may be formed 
at this single bud site, making budding percurrent. As a 
result, most parental cell-bud combinations have a some-
what flask-shape morphology that can also be easily recog-
nized, also when present in, e.g., skin biopsies. Meanwhile, 
sympodial budding, but only occurring at one pole of the 
cells, has been reported, e.g., in M. sympodialis (Simmons 
and Guého 1990). This unique morphological feature makes 
it rather easy to recognize a yeast cell as belonging to the 
genus Malassezia. As of today, the genus contains 18 species 
(Wijayawardene et al. 2020).

Malassezia yeasts occur as commensals on human skin; 
they are causal agents of skin disorders such as pityriasis 
versicolor, seborrheic dermatitis, atopic dermatitis, folliculi-
tis, and dandruff; and they have been reported to cause sepsis 
in patients (pre-term babies, immunodeficient adults) who 
receive parenteral nutrition via a catheter (Boekhout et al. 
2010; Gaitanis et al. 2012; Iatta et al. 2018; Theelen et al. 
2018; Rhimi et al. 2020). In a 1-year hospital study in Italy 
the incidence of Malassezia-related sepsis was 2.1% among 
cases of expected candidemia (Iatta et al. 2018). Because of 
the involvement of several species in various skin disorders 
(e.g., M. furfur, M. globosa, M. sympodialis, M. restricta) 
and sepsis (M. furfur, M. pachydermatis, M. sympodialis), 
correct species identification is important. This was empha-
sized as part of recently published clinical guidelines (Aren-
drup et al. 2014). We believe that the number of invasive 
Malassezia-related infections is vastly underreported as the 
special media required for their growth are not used in rou-
tine clinical microbiology laboratories (Iatta et al. 2018).

Malassezia globosa and M. restricta are widely involved 
in skin-related disorders at a global scale. As a result, many 
pathobiological studies focus on these two species (Gaitanis 
et al. 2012; Grice and Dawson 2017; Theelen et al. 2018). 
Moreover, their dermatological importance made that the 
genomes of these two species were the first to be published 
(Xu et al. 2007), later followed by the genomes of most other 
species (Wu et al. 2015). Meanwhile, the description of the 
recently described species M. verpertilionis from Myotinae 
bats in the USA was accompanied with the characteriza-
tion of its genome sequence (Lorch et al. 2018). Malassezia 
yeasts are also important because they cause skin infections 
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in other warm-blooded animals, including pets (Table 1). 
For instance, M. pachydermatis is the main causal agent of 
dermatitis and otitis in dogs and cats (Cafarchia et al. 2005; 
Sugita et al. 2010; Bond et al. 2020).

Until recently, the taxonomic position of Malassezia was 
not settled, but an affinity with the basidiomycetous yeasts 
was inferred based on the presence of enteroblatic mode 
of budding, the presence of urease activity, and a positive 
Diazoneum Blue B salt reaction (Guého-Kellermann et al. 
2010, 2011). Based on the phylogenetic analysis of the LSU 
alone or in combination with protein-coding genes, it was 
proposed that the genus belongs to Ustilaginomycotina 
(Begerow et al. 2000, 2006; Xu et al. 2007), where it was 
classified within the order Malasseziales in Exobasidiomy-
cetes. An alternative proposal placed it in Ustilaginomycetes 
(Matheny et al. 2007). Hibbett et al. (2007) treated Malasse-
ziales as Ustilaginomycotina incertae sedis.

Wang et al. (2014) expanded the previously used set of 
loci to better understand the phylogenetic position of the 
genus within Ustilaginomycotina. To study the taxonomic 
position of Malassezia, they used three datasets: a nuclear 
rDNA dataset including the complete SSU, ITS, and the 
LSU D1/D2 domains; a protein-coding dataset including 
rpb1, rpb2, and tef1; and a combined six-locus dataset. Four 
monophyletic clades were resolved within Ustilaginomyco-
tina: the two classes Exobasidiomycetes and Ustilaginomy-
cetes, a Malassezia clade, and a Moniliella clade. Based on 
their work, Wang et al. (2014) proposed to classify the genus 
Malassezia in its own class Malasseziomycetes in Ustilag-
inomycotina. Later, based on their seven-locus dataset—also 
including cytb—the distinctness of the Malassezia lineage 
was confirmed among many species of Ustilaginomyco-
tina (Wang et al. 2015a). A genomic-scale analysis with 29 
isolates representing 14 species placed Malasseziomycetes 
basal to Exobasidiomycetes and Ustilaginomycetes, which 
both are mostly plant-inhabiting lineages (Wu et al. 2015). 
Kijpornyongpan et al. (2018) were unable to confidently 
place Malasseziomycetes within the Ustilaginomycotina, a 
result that was linked to the extreme divergence of this class 
from other members of the subphylum (animal-associated, 
small genome sizes).

Unique morphological features support the isolated 
position of Malasseziomycetes among Ustilaginomycotina. 
These are the monopolar mode of budding, the thick helicoi-
dal cell walls, and the lipid dependency of most Malassezia 
species (Guého-Kellermann et al. 2010, 2011; Table 1). The 
affiliation with warm-blooded animals is also unique within 
the subphylum—and suggests a highly specialized mode of 
evolution of these yeasts. This may be illustrated by exten-
sive differences in the enzyme profile among the animal- and 
plant-associated members of Ustilaginomycotina (Xu et al. 
2007).

Species concepts and species recognition

For a long time, only two species were recognized (M. fur-
fur, M. pachydermatis) that could be separated based on 
the ability, or lack thereof, to grow on regular mycological 
growth media without the supplementation of lipids. Sim-
mons and Guého (1990) recognized another, lipid-depend-
ent, species, M. sympodialis, particularly based on a differ-
ent mode of budding, namely sympodial rather than strictly 
percurrent. A major step forward was made when molecular 
characters became available, especially the LSU, and their 
use in phylogeny (Guého et al. 1996). In this landmark paper, 
four new species were introduced: M. globosa, M. obtusa, 
M. restricta, and M. slooffiae. Two of these species—M. 
globosa and M. restricta—were found to be the main species 
involved in many skin disorders that before were thought to 
be caused by M. furfur. The circumscription of these spe-
cies was also supported following the non-sequence-based 
identification system as proposed by Guillot et al. (1996), 
using phenotypic (colony morphology, yeast cell morphol-
ogy, ultrastructural details of cell walls) and physiological 
features (presence of catalase activity, growth at 37 °C, and 
the ability to utilize Tween 20, 40, 60, and 80). Later, 11 
other species were recognized mainly based on differences 
in rDNA sequences resulting in 18 species that are presently 
recognized (Table 1). This number likely is an underestima-
tion of the true diversity of Malassezia species; metabarcod-
ing studies based on ITS sequences have revealed various 
lineages that could not yet be identified as known species 
(Amend et al. 2012; Amend 2014).

Phylogenetic studies showed the presence of several clades 
within the genus. Based on an analysis of the LSU D1/D2 
domains, four clusters were observed: (i) M. furfur, M. japon-
ica, M. obtusa, M. yamatoensis; (ii) M. caprae, M. dermatis, 
M. equina, M. globosa, M. nana, M. restricta, M. sympodia-
lis; (iii) M. slooffiae; and (iv) M. pachydermatis. Using ITS 
sequence data, the “furfur” and “globosa” clades could not 
be separated (Guého-Kellermann et al. 2010). Analyses of 
partial sequences of the chitin synthase 2 gene, the LSU D1/
D2 domains, and the ITS region were consistent (Cabañes 
et al. 2005, 2007): the “sympodialis” clade with M. caprae, 
M. equina, M. dermatis, and M. sympodialis, with M. nana as 
a basal lineage; the “furfur” clade with M. furfur, M. japonica, 
and M. obtusa; and the “globosa” clade with M. globosa, M. 
pachydermatis, M. restricta, M. slooffiae, and M. yamatoensis. 
Partial sequences of rpb1 supported M. nana as part of the 
“sympodialis” clade (Cabañes et al. 2007). Although all phylo-
genetic analyses supported the thus far recognized species, the 
position of some species, e.g., M. pachydermatis and M. sloof-
fiae, have remained unclear (Guého-Kellermann et al. 2010).

A phylogenomics approach of 164 Core Eukaryotic 
Genes (CEGs) resulted in a mostly concordant tree topology 
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compared with the LSU D1/D2 tree (Wu et al. 2015; Theelen 
et al. 2018). Three main clades were retrieved: (i) Clade A 
with M. brasiliensis, M. furfur, M. japonica, M. psittaci, and 
M. yamatoensis; (ii) clade B with M. arunalokei, M. glo-
bosa, M. restricta (= clade B1 in the LSU D1/D2 tree), M. 
caprae, M. dermatis, M. equina, M. nana, M. pachyderma-
tis, and M. sympodialis (= clade B2); and (iii) clade C with 
M. cuniculi and M. slooffiae. Sequences of multiple isolates 
of M. furfur, M. globosa, M. restricta, and M. sympodialis 
showed that they formed monophyletic lineages as expected, 
and all four but M. sympodialis showed some nucleotide 
polymorphisms.

Intra-specific sequence variation For a correct interpre-
tation of species boundaries, the extent of genetic diversity 
within these so-called species must be acknowledged. Sugita 
et al. (2010) compared the amount of divergence in the LSU 
D1/D2 domains and the ITS1 and ITS2 spacer regions for 
13 Malassezia species. For all species, sequence similar-
ity of the LSU D1/D2 ranged between 99% and 100%. The 
similarity of ITS1 and ITS2 sequences was again 99–100% 
for eight species, but 73–95% (ITS1) and 91–100% (ITS2) 
for five species (M. furfur, M. globosa, M. nana, M. pachy-
dermatis, M. restricta). These results indicate that there may 
be more undescribed species “hidden” within these taxa. 
Note that for most species with high similarity values, only a 
few isolates were available. The only exception in this study 
was M. sympodialis that seems to be a well-circumscribed 
species with limited sequence variation (100% similarity in 
sequences of LSU D1/D2, ITS1, ITS2).

Extensive genotypic variation was observed in species 
that are clinically important and, as a result, extensively 
sampled, e.g., M. furfur, M. globosa, M. pachydermatis, 
and M. restricta, further indicating that these species might 
represent species complexes, rather than distinct species, 
but this needs further investigation. Sequence analysis of 
the intergenic spacer region IGS1 of M. globosa showed 
the presence of 4–8 main clusters, depending on the study, 
that correlated at least in part with the disease status of 
the humans from which the isolates were obtained (Sugita 
et al. 2003, 2010). Single-strand conformational polymor-
phism analysis of the ITS1 spacer region resulted in five 
groups of M. globosa isolates from pityriasis versicolor 
patients (Gaitanis et al. 2006).

Intra-species variation for M. furfur has been observed 
for various properties at both the phenotypic and molecu-
lar phylogenetic levels. Boekhout and Bosboom (1994) 
observed four different karyotypes with variation in size 
and number of chromosomes. Whereas most strains had 
seven chromosomal bands, strains belonging to karyotype 
2 exhibited ten chromosomal bands. The first study that 
applied AFLP for typing of Malassezia species, identi-
fied five M. furfur subgroups and linked karyotype 2 to 
a specific AFLP-subcluster. Though the sampling size 
was rather small, for the first time it was hypothesized 
that a specific genotype preferentially may invade the 
body, linking intra-species variation to clinical relevance 
(Theelen et al. 2001). Another study revealed eight distinct 

Table 1  Species of Malassezia 
with their hosts and lipid 
dependency

Malassezia species Host(s) Lipid dependency

M. arunalokei Humans Lipid dependent
M. brasiliensis Birds Lipid dependent
M. caprae Goats, horses Lipid dependent
M. cuniculi Rabbits Lipid dependent
M. dermatis Humans Lipid dependent
M. equina Cow, horses Lipid dependent
M. furfur Birds, camels, cow, dogs, elephants, felids, goats, horses, 

humans (sepsis), monkeys, pigs, sheep
Lipid dependent

M. globosa Birds, cow, dogs, felids, horses, humans, sheep Lipid dependent
M. japonica Humans Lipid dependent
M. nana Cow, dogs, felids, horses Lipid dependent
M. obtusa Humans Lipid dependent
M. pachydermatis Birds, carnivores, dogs, felids, goats, horses, humans (sep-

sis), pigs, rhinoceros, sea lions
Lipophilic

M. psittaci Birds Lipid dependent
M. restricta Birds, cow, dogs, felids, horses, humans, sheep Lipid dependent
M. slooffiae Birds, goats, horses, humans, pigs, sheep Lipid dependent
M. sympodialis Birds, dogs, felids, horses, humans (sepsis), pigs, sheep Lipid dependent
M. vespertilionis Bats Lipid dependent
M. yamatoensis Humans Lipid dependent
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subgroups in M. furfur that to some extent correlated 
with clinical and geographic origin (Gupta et al. 2004). 
Gaitanis et al. (2009) found a correlation between PCR 
fingerprint clustering and the host’s geographic origin 
and underlaying skin condition. A study mainly focusing 
on M. furfur from domestic and zoo animals, observed 
phenotypic variation as well as multiple sequence-based 
genotypes for ITS, LSU, and btub (Puig et al. 2018). Pres-
ence of hybrid genotypes in M. furfur was first observed 
by Theelen et al. (2004), based on AFLP banding-patterns. 
In a subsequent comparative genomics study, a hybridiza-
tion event was also suggested based on genome size and 
double copy number for most genes for some strains of M. 
furfur, which corresponds with karyotype 2 having addi-
tional chromosomal bands (Boekhout and Bosboom 1994; 
Wu et al. 2015). Recently, hybridization events have been 
widely linked to the rise of new pathogens, as well as to 
increased intra-specific variation.

Conclusion and recommendations

In Malasseziomycetes, species are delimited based on 
sequence divergence of the LSU D1/D2 domains, the ITS1 
and ITS2 spacers, rpb1, rpb2, chitin synthase 2, and btub, 
usually in combination with phenotypic differences in cel-
lular morphology, colony morphology, and growth profiles 
using an array of Tweens. Ecology (host specificity) is an 
important adjunct to recognize species. Practical species rec-
ognition is possible using MALDI-TOF mass spectrometry. 
Although a sexual stage has not yet been found, genome 
comparisons revealed a likely functional mating system, 
which needs to be tested under appropriate experimental 
conditions. Hybrids occur next to genetically pure species. 
Several of the currently known taxa probably represent 
species complexes—e.g., M. furfur, M. globosa, M. pachy-
dermatis, and M. restricta. In the future, extensive genome 
comparisons are needed to better understand the taxonomic 
structure of these complexes.

In our experience, most Malassezia isolates can be identi-
fied using sequences of the LSU D1/D2 domains only. How-
ever, because several closely related species (e.g., M. caprae, 
M. dermatis, M. equina, M. sympodialis) show highly simi-
lar LSU D1/D2 sequences, we recommend to also use ITS 
sequences for accurate identification. Attempts to use phe-
notypic methods to identify unknown Malassezia isolates 
are cumbersome and prone to inaccuracies. For instance, 
Gupta et al. (2004) reported an error rate of 13.8%. Recently, 
however, MALDI-TOF mass spectrometry has been found 
to be a useful instrument for the identification of unknown 
isolates (Kolecka et al. 2014; Denis et al. 2016; Honnavar 
et al. 2018); to achieve good results, current species libraries 
have to be made, both with reference isolates and—given the 

extent of genetic diversity seen in most species—also with 
locally obtained isolates.

Species delimitation in Moniliellomycetes

Moniliellomycetes contains one order (Moniliellales), one 
family (Moniliellaceae), and one genus (Moniliella) with 17 
described species. The genus Moniliella was described to 
accommodate two species of black yeasts, M. acetoabutens 
(type) and M. tomentosa (Stolk and Dakin 1966). These spe-
cies were recognized based on morphological differences, 
such as presence or absence of chlamydospores and size of 
arthroconidia. In 1979, a series of articles were published 
on Moniliella and the putative allied genera Hyalodendron 
(nowadays in Tremellomycetes, Trichonosporales) and Tri-
chosporonoides (currently synonymized with Moniliella), 
based on morphology, growth profiles, cell wall carbohy-
drate composition, and production of volatiles (de Hoog 
1979; de Hoog and Roeijmans 1979; Martinéz 1979; Mar-
tinéz and de Hoog 1979; Martinéz et al. 1979; Weijman 
1979). Species of Hyalodendron possess xylose in their cell 
walls, whereas those of Moniliella and Trichosporonoides 
lack this compound, and have glucose, galactose, and (low) 
mannose, but with erythritol and unidentified polyols. Mon-
iliella species are capable of fermentation, which is a very 
uncommon feature among Basidiomycota (de Hoog et al. 
2011). de Hoog and Guého (1984) revealed that several spe-
cies of Moniliella differed widely in the percentage of GC 
content with values ranging from 45.8% to 62.5%. Trichos-
poronoides was synonymized under Monilliella by LSU D1/
D2 sequence analysis (Rosa et al. 2009), confirming previ-
ous suggestions based on morphology (Boekhout 1998; de 
Hoog and Smith, 1998a, b).

Different species have been recovered from different sub-
strates, including tobacco, juices, syrups, fats, oils, and acids. 
Some species have also been found from flowers (Thanh 
et al. 2013; Thanh and Hien 2019). Often the substrates have 
low water activity and some of the species are known to be 
xerophilic (e.g., Hocking and Pitt 1981). Some species are 
involved in industrial alcohol processing (Burschäpers et al. 
2002; Kobayashi et al. 2015), whereas others are of medical 
and veterinary importance (McKenzie et al. 1984; Pawar et al. 
2002). Under culture conditions, Moniliella species grow in 
yeast-like, pseudohyphal, or hyphal form, with hyphae form-
ing arthro- and blastoconidia (de Hoog et al. 2011). The place-
ment of the genus within Basidiomycota remained unclear 
for a long time, mainly due to conflicts among various phe-
notypic features. The systematic position of the genus Mon-
iliella remained unclear until a few years ago, as they share 
a similar cell-wall composition with other members of Usti-
laginomycotina, but several species develop a dolipore that is 
more similar to septal pores of Agaricomycotina than those 
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of Ustilaginomycotina (Haskins 1975; Weijman 1979). Only 
the application of molecular phylogenetic methods resolved 
the position of this clade—as its own class within subphylum 
Ustilaginomycotina (Wang et al. 2014).

Species concepts and species recognition

Phylogenetic analysis of Moniliellomycetes is based on mul-
tiple DNA markers, mainly the rDNA loci (SSU, ITS, LSU) 
and protein-coding genes cytB, rpb1, rpb2, and tef1 (Thanh 
et al. 2012, 2013, 2018; Wang et al. 2014, 2015a; Thanh and 
Hien 2019). Species are mainly delimited by the LSU D1/
D2 domains and ITS, as well as methylation-specific PCR 
fingerprinting profiles. In addition, physiological character-
istics are used for species delimitation.

Conclusion and recommendations

Moniliella species share several morphological and physi-
ological traits, which justifies their treatment in one genus. 
Genetically, the genus is very heterogeneous with large 
genetic differences among individual species; further stud-
ies might result in systematic revisions at higher taxonomic 
levels (e.g., Thanh et al. 2018). In Moniliellomycetes, spe-
cies are delimited based on a combination of sequence 
analysis of the rDNA, mainly the LSU D1/D2 domains 
and the ITS1 and ITS2 spacers, and phenotypic differences 
in cellular morphology, colony morphology, physiologi-
cal growth profiles using an array of carbon and nitrogen 
sources, and fermentation of sugars. A sexual stage is still 
unknown, and, hence, the biological species concept has 
not been used. However, genome comparisons will likely 
uncover the mating locus structure and provide strategies 
to investigate sexual reproduction. Also, it can be expected 
that comparative genomics will improve the understanding 
of species boundaries in these black yeasts.

Species delimitation in Ustilaginomycetes

Ustilaginomycetes is the largest class within Ustilagino-
mycotina and contains mostly dimorphic plant parasites 
(Begerow et al. 2014). Most taxa occur on monocotyledon-
ous plant orders, but Ustilaginomycetes also have a diverse 
range of dicotyledonous hosts. Some taxa are only known 
as yeasts. The class comprises four orders (Uleiellales, Uro-
cystidales, Ustilaginales, Violaceomycetales), 17 families, 
70 genera, and around 1200 species (Wang et al. 2015a; 
Begerow  et al. 2018; He et al. 2019). Ustilaginomycetes 
is a well-supported monophyletic group. Generic defini-
tions were traditionally based on morphological traits and 
host plant identity. Since the advent of molecular methods, 
generic boundaries are mostly defined using DNA markers, 
thereby leading to the realization that previously pure yeast 

taxa could be incorporated into a systematic framework of 
Ustilaginomycetes. Molecular studies additionally often hint 
at morphological traits that are synapomorphic for a given 
monophyletic group (e.g., McTaggart et al. 2016). Due to the 
large diversity and the scarcity of specimens in most taxa the 
internal systematics of the Ustilaginomycetes is still not fully 
resolved, but species in genera are well defined.

Species concepts and species recognition
The vast majority of species in this class are well delimited 

by morphological, ecological (host plant), and molecular char-
acteristics. Macroscopic traits include general sorus texture 
and sorus location. Microscopic characteristics are spore size 
and color, spore ornamentation, and sometimes germination. 
Ultrastructural features such as septal pore structure or inter-
action zones are important for the distinction of larger groups 
(Bauer et al. 1997) but play no role in species delimitation. 
For molecular-based species delimitation, mainly rDNA loci 
(ITS, LSU) are used, increasingly combined with additional 
markers encoding proteins (e.g., tef1, GADPH, atp2, btub). 
However, data for protein-coding genes is still scarce for most 
taxa. For species recognition, host identity is still the most 
important factor and because host specificity of these fungi is 
assumed to be very high, species descriptions without molec-
ular data are still frequent. Often molecular phylogenetic work 
subsequently confirms these taxa as individual species.

As in all plant–parasitic Ustilaginomycota, mating is a 
prerequisite for infection as the infection process is controlled 
by mating-specific transcription factors. Di- and tetrapolar 
mating systems are known and, interestingly, mainy species 
seem to have a three-allelic mating system (Bakkeren et al. 
2008; Kellner et al. 2011). With respect to the biological 
species concept, mating experiments between different spe-
cies have been conducted. Whereas some species hybridize 
and even produce spore characteristics following mendelian 
genetics, most species seem to be not compatible in terms of 
successful mating (Kniep 1922; Kellner et al. 2011).

Species concepts in Ustilaginomycetes are challenged by 
the inclusion of haploid yeasts strains as revealed by molecu-
lar phylogeny, because typical structures of plant parasitism 
are lacking (Begerow et al. 2000). Mating partners often 
could not be identified and it is assumed that these strains 
represent plant-parasitic species in the haploid phase. There-
fore, a phylogenetic species concept as described above is 
used whenever possible.

Conclusion and recommendations

Molecular studies demonstrate a high host specificity in 
most Ustilaginomycetes species and this has resulted in 
splitting species complexes into separate taxa (e.g., Kruse 
et al. 2018). Ustilaginomycetes provides an excellent exam-
ple of a successful integrated taxonomy approach for species 
delimitation—based on morphology, physiology, ecology, 
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and phylogeny. The diverse nature of dimorphic species can 
only be dealt with using all available data in each case.

Overall conclusion and future perspectives

As shown in the taxonomic sections above, every single 
property used to delimit species has its strengths and short-
comings. Given this, the best practice is to delimitate species 
and publish new taxa based on as many independent lines of 
evidence as available, that is, by applying a so-called inte-
grative (or polyphasic) taxonomic approach. This is coherent 
with a unified species concept, also termed the “General 
Lineage Concept of species” (de Queiroz 2007), in which 
species are treated as segments of separately evolving meta-
population lineages, which can be delimited by using former 
species concept criteria as independent lines of evidence 
(e.g., GCPSR, ecological differentiation, morphological 
diagnostics, geographic range, etc.).

An emerging theme among fungal taxonomists is the 
increasing use of DNA sequences in supporting the taxo-
nomic uniqueness of individual taxa (Seifert and Rossman 
2010). Phylogenetic analyses based on DNA sequences of a 
single locus to multiple loci have revolutionized the study of 
fungal taxonomy and provided strong support for establish-
ing new taxa at different taxonomic levels (Yang 2013). This 
approach has led to the identification of a large number of 
new and cryptic species within previously recognized spe-
cies (O’Donnell et al. 2004; Chen et al. 2011; Short et al. 
2013; Hagen et al. 2015; Doungsa-Ard et al. 2018). How-
ever, there is no standard as to which loci should be ana-
lyzed, how much sequence divergence is needed, and what 
statistical node support is required to call different strains 
as belonging to different species (Xu 2020). In the recent 
review by Matute and Sepúlveda (2019), the mean number 
of unlinked loci to delimit species was 4 (ranging among 
studies from 1 locus to 15 unlinked loci). Often, the con-
venience and operability of DNA markers and the traditions 
of the specialist taxonomists working on the specific group 
of fungi play a large role in determining how species are 
delimited for most fungal groups (Xu 2020).

As sequencing costs are decreasing, whole-genome scale 
data has begun to be used for phylogenetic analysis of fungi 
(Hettiarachchige et al. 2015; Dentinger et al. 2016; Leav-
itt et al. 2016; Sepúlveda et al. 2017; Libkind et al. 2020). 
Genomic data may be more objective in overcoming most of 
the shortcomings of traditional single locus or multilocus-
based studies. Matute and Sepúlveda (2019) proposed four 
criteria to identify species boundaries using genome scale 
data in fungi: (i) mostly reciprocal monophyly, (ii) high 
concordance among genomic partitions, (iii) lower inter-
species differentiation than intraspecific differentiation, and 
(iv) low shared polymorphism. For genome-based species 

delimitation to work accurately, a dedicated repository with 
functions for annotation and comparative searches should 
be available and filtering and curation protocols should be 
established to prevent the propagation of misinformation 
on fungal genomes in the literature (Xu 2020). In addition, 
whole-genome sequences should be generated for represent-
ative specimens of previously described species and the type 
material of newly introduced species, ultimately leading to a 
robust dataset of whole-genome sequences for all described 
fungal species. Whole-genome scale data provide more 
information at the population level (Liti et al. 2010), but 
how to use these data to improve species delimitation is still 
a problem with regard to the analytical methods (Philippe 
et al. 2011; Choi and Kim 2017). Additional analytical chal-
lenges involve adjusting for horizontal gene transfer, gene 
duplications, and population-level processes to determine 
the true species phylogeny (James et al. 2020).

As a final note, species are the cornerstone of taxonomy. 
While there are a number of requirements set out by the 
International Code of Nomenclature for algae, fungi, and 
plants (Turland et al. 2018) to be followed for a name to be 
validly published, no official rules exist for species descrip-
tions. Nevertheless, mycologists should document newly 
introduced species following “community standards” to 
facilitate their identification for other researchers (Yurkov 
et al. 2021). In moving forward to describe the fungal diver-
sity present on the planet, mycologists are encouraged to 
adhere to the following best-practice recommendations:

 (i) Multiple collections that preferably represent dif-
ferent geographic localities or substrates, whenever 
available. Description of (pseudo)cryptic species 
based on a single collection is generally discouraged.

 (ii) Multiple lines of evidence for accurate species delim-
itation (unified species concept). It is often the case 
that molecular phylogenetic data alone provide insuf-
ficient information to describe new species, as do 
morphological characteristics on their own.

 (iii) DNA barcode sequences deposited in a public reposi-
tory (e.g., NCBI GenBank). It is also recommended 
to deposit aligned sequence datasets used to support 
new species delineations.

 (iv) Compliance with local and international regulations 
to collect, export, and deposit specimens.

For details on any one of these general recommenda-
tions, please see the recently published papers by the Inter-
national Commission on the Taxonomy of Fungi (ICTF) on 
how to identify fungi (Lücking et al. 2020) and how to 
describe new fungal species (Aime et al. 2021).
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