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A B S T R A C T   

Open-access occurrence data are useful for studying spatial patterns of fungi, but often have quality issues. These 
include errors in taxonomy and geo-coordinates, and incomplete coverage across areas and taxonomic groups. 
We identify 15 quality issues that can lead to incorrect biogeographic inference, and develop a reproducible 
pipeline that flags and removes problematic entries. This pipeline tests accuracy of geographic records and 
names. Then, if information on non-native status is unavailable or unreliable, it detects non-native species via a 
predictive model. Finally, it identifies spatial and environmental outliers and removes them when biologically 
improbable. We test the pipeline by cleaning data for Australian fungi, with 251,642 records retained after 
cleaning the initial 1,034,601 records. Exploratory analysis showed that the cleaned data is useful for analyses 
such as biogeographic regionalisation, but recording gaps and lack of saturation in collection effort also caution 
that more surveys are needed to improve collection completeness.   

1. Introduction 

Open-access repositories of geo-referenced biological data, such as 
the Global Biodiversity Information Facility (GBIF), are a central 
resource for the study of biogeography across taxa. For fungi, repository 
data are especially important because they are often the only source of 
data applicable for biogeographic studies (Hao et al., 2020; Wüest et al., 
2020). Repository data for fungi consist primarily of citizen science 
observations and digitised information on reference specimens. In some 
regions, large amounts of these data are now available, and demon-
strably useful in large-scale studies of fungal biogeography (e.g., 
Andrew et al., 2017, 2019; Gange et al., 2019). Although promising new 
opportunities, repository data also contain undesirable features that 
compromise their use in biogeography (Thessen and Patterson, 2011). A 
major issue is that, despite automated quality-control protocols imple-
mented in most repositories, errors in both geo-coordinates and in tax-
onomy are common (Thessen and Patterson, 2011; Serra-Diaz et al., 
2018; Hao et al., 2020). In addition, common characteristics of re-
pository data, such as uneven collection effort across space, can create 
artefactual patterns, further complicating the use of such data in 
biogeographical studies (Phillips et al., 2009; Troia and McManamay, 

2016; Hao et al., 2020). These problems underline the need for pre-
cursory data treatment in studies using repository data (Anderson et al., 
2016; Zurell et al., 2020). This step is particularly important in fungal 
studies (Andrew et al., 2019), because of the likely high prevalence of 
issues including ongoing taxonomic changes, high proportion of citizen 
science observations, and the frequent lack of taxonomic curation (due 
to small number of active experts working on and curating records of 
fungi compared to plants and animals). 

As repository data are recognised as crucial but challenging to use in 
the study of fungal biogeography, it is important to ask how to explore 
such data so that their problematic features can be identified and dealt 
with where possible. While data cleaning is practiced and reported by 
some researchers using repository fungal data (e.g., Andrew et al., 
2017), there is no comprehensive and accessible knowledge base con-
cerning the types of problematic features expected in fungal data, and 
how to identify and address them. For example, it is unclear what types 
of automated error-detection tests are applicable to repository data, and 
how to best integrate taxonomic expert curation in the cleaning process. 
It is also unclear how collection effort changes over time and space, and 
how this might affect the completeness of recorded biological patterns. 
To address these knowledge gaps, in this paper, we (1) develop an 
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iterative and reproducible data enhancement pipeline, combining 
script-based error detection, taxonomic matching with external datasets, 
and validation with taxonomic expertise, and (2) demonstrate a range of 
exploratory analyses suitable for summarising the main patterns in re-
pository data, in terms of taxonomy, space, time, environments, 
collection effort, and bioregional patterns. We do so through a case 
study on enhancing and exploring Australian fungi data. Australia acts 
as a useful model for wider analyses due to the large variations in 
climate and ecosystems across the region and because there is an 
advanced biodiversity infrastructure already in place. We also make 
available the resulting cleaned dataset of Australian fungi, readily 
useable for future biogeographic analyses. 

2. Materials and methods 

2.1. Creating a fungal occurrence dataset for Australia 

We report our methods in the present tense to emphasise that we are 
describing a process that can be done repeatedly at any time, though our 
results describe the dataset downloaded on 15/10/2019. Fungal occur-
rence records are gathered from five major repositories containing data on 
fungi occurring in Australia, namely: Fungimap (https://fungimap.org.au/; 
data obtained directly from Fungimap Inc.), and from the websites of: 
MycoPortal (https://mycoportal.org/portal/index.php), the Atlas of Living 
Australia (ALA; https://www.ala.org.au/; DOI of our download at Atlas of 
Living Australia occurrence download), the Global Biodiversity Informa-
tion Facility (GBIF; https://www.gbif.org/; DOI of our download at GBIF. 
org 2019 Occurence download), and iNaturalist (https://www.inaturalist. 
org/home). The number of records obtained from each database is pre-
sented in Fig. 1; in total there are 1,034,601 records. GBIF and ALA are not 
fungi-specific databases, so we search for all records that (1) belong to the 
kingdom of Fungi, (2) are found in Australia, and (3) whose ‘basis of re-
cord’ are ‘preserved specimen’ or ‘human observation’. We select these two 
categories, defined in the Darwin Core (Wieczorek et al., 2012), as “basis of 
record” because they are the most abundant and share the same collection 
process via mostly opportunistic human visitation. Records based on 
‘environmental DNA’ are also common, but they have different features (e. 
g., usually not opportunistically collected) and harbour different detection 
and identification issues (e.g., falsely detecting presence from sample 
contamination; Guillera-Arroita et al., 2017), so we exclude them here. 

Other ‘basis of record’ types (e.g., genomic DNA, material samples, living 
specimen) are also excluded because they are rare and often georeferenced 
to research facilities. These ‘basis of record’ choices mean that most species 
considered in our dataset are lichens and macrofungi, the latter defined as 
fungi producing visible sporing bodies (i.e. sporophores or fruit bodies; we 
prefer the term “sporing bodies” over “fruit bodies” as being a technically 
correct and easily understandable term to replace the plant-centric termi-
nology inherent in “fruit” body). However, a small amount of pathogenic 
microfungi are also captured, as they can be observed/collected through 
infected hosts (e.g., the well-known amphibian chytrid fungus Batracho-
chytrium dendrobatidis). In the ALA specifically, we also exclude records 
from Fungimap since those are separately obtained. iNaturalist is a citizen 
science observation-specific database, so we search for all ‘research grade’ 
Fungi records in Australia. MycoPortal is a fungi-specific data aggregator 
but not Australia-specific, so we search for all records that are (1) in 
Australia, and (2) not from the ALA or iNaturalist. Fungimap is both 
fungi-specific and Australia-specific, so all data are included. 

We created a script in the R statistical language version 3.5.1 (R Core 
Team, 2017), to combine all records into one dataset with the following 
fields: source repository, original ID, scientific name, state, locality 
description, coordinate uncertainty in metres, date, longitude and lati-
tude, basis of record, collector/observer, and substrate and habitat. 
Correspondence between our fields and those in the source datasets are 
documented in the R script in Hao et al., (2021). 

2.2. Data treatment pipeline 

Initial careful exploration of the dataset by co-authors TH and TM 
reveals 15 potential quality issues relevant to individual records or 
entire taxa that can lead to erroneous biogeographic signals, detailed in 
Table 1. We pass all records through a pipeline consisting of discrete 
steps, to detect and flag records or taxon names that potentially harbour 
such issues. In the following paragraphs, we describe in detail steps in 
the pipeline, and in Fig. 1, we detail the amount of data retained after 
each step of the pipeline. 

2.2.1. Pipeline step: geographic information 
Since all records are geo-coordinated in decimal degrees, we first 

remove records with missing or invalid (i.e. < − 180 or >180 for 
longitude and < − 90 or >90 for latitude) geo-coordinate information, 

Fig. 1. Overview of the data treatment pipeline (including number of records at each step) beginning with the Record List for which Geographic information is 
required, from which a Name List is generated and cleaned according to Names and Species status of origin and used to refine the records, followed by Deduplication and 
Error detection for the remaining records. 
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and correct records with inverted latitudes (i.e., where southern hemi-
sphere is not represented as a negative latitudinal value). We then 
reproject all longitude and latitude coordinates to GDA94 Australian 
Albers equal area projection – this is necessary for binning data into 
equal-sized spatial blocks in later analyses. Then, using a coarse raster 
representation of Australia at 100 km resolution, we remove records 
whose coordinates fall outside the raster (i.e., far away from Australia). 
To further correct for records that may incorrectly appear just off-coast 
due to coordinate imprecision, we use a 1 km resolution Australia raster 
to remap all oceanic coastal records to the nearest adjacent terrestrial 
cell (using the ‘biogeo’ package in R; Robertson, 2016). We also remove 
a minor number of sensitive species records whose coordinates as pub-
lished in the repositories are known to be manipulated to hide locations. 

2.2.2. Pipeline step: names 
We first remove all records with improperly formed names (e.g. 

missing genus or species name, or name containing numerical charac-
ters) or those with taxon rank higher than species. We also remove some 
closely related species that cannot be confidently separated in the field 
on current knowledge (e.g. those in the genus Trametes formerly referred 
to Pycnoporus). Then, we tabulate all unique names left in the dataset, 
creating a master ‘name list’. To check the validity of names and update 
any synonyms in the name list to their up-to-date accepted name, we 
match all names in the name list against two databases of names: the 
fungi and lichen components of the Australian National Species List 
(NSL), and the Catalogue of Life (CoL) accessed via GBIF. The NSL and 
CoL provide an accepted name for all names along with higher taxon-
omy. These databases allow us to check whether the names in our name 

Table 1 
Potential quality issues in repository data and respective steps in our data 
cleaning pipeline designed to address them. As an example of how they may 
result in erroneous patterns in biogeographic analyses, we tabulate the conse-
quences of such issues if the data were used to cluster areas into bioregions based 
on species dissimilarity in 100 by 100 km spatial blocks; for details on this 
regionalisation method see (Laffan et al., 2010; González-Orozco et al., 2014) 
and section Biogeographic regionalisation.  

# Step in pipeline 
for addressing 
issue 

Quality Issue Consequence for 
biogeographic 
regionalisation 

1 Geographic 
information 

Invalid or missing geo- 
coordinate 

Record cannot be used in 
geographic analyses. 

2 Geographic 
information 

Geo-coordinate outside 
study region 

Record cannot be used in 
geographic analyses. 

3 Names Same taxonomic name 
used for different species, 
each with distinct 
distribution patterns 

If distributed across multiple 
underlying bioregions, these 
records will erroneously 
inflate species similarity 
between bioregions, making 
it harder to distinguish them. 

4 Names Same taxonomic name 
used for different species 
with similar distribution 
patterns 

These species may co-occur 
in the same bioregion – while 
this may confuse sub- 
regional clustering, it does 
not confound distinct signals 
of the bioregion. If these 
species are all cosmopolitan, 
then this issue is similar to 
issue #8. 

5 Names Different taxonomic 
names (e.g. unmerged 
synonyms) of the same 
species used in 
geographically distinct 
areas 

Falsely increases 
dissimilarity between 
bioregions. However, this 
issue can only result from 
geographically distinct 
naming conventions. 

6 Names Different taxonomic 
names of the same 
species used in same 
areas 

The appearance of the same 
species under different 
names falsely inflates 
diversity, but if the species is 
indeed restricted to one 
bioregion, then the unlinked 
synonyms are also restricted 
to the same bioregion, not 
affecting the discoverability 
of bioregions. 

7 Species status of 
origin 

Species is introduced Such species likely do not 
conform with native 
bioregion boundaries (e.g. 
they may be restricted by 
distribution of exotic host 
plants), and likely have not 
reached dispersal 
equilibrium, thus their 
records can create noise in 
biogeographic signals, if 
mistaken as native species. 

8 Species status of 
origin 

Species is cosmopolitan 
(i.e. distributed across 
bioregions), and unclear 
whether native 

Such species are likely 
recorded across bioregions, 
thus they are unlikely to 
affect dissimilarity between 
regions. 

9 Species status of 
origin 

Species is native, but may 
occur in ruderal, human 
modified locations (e.g. 
disturbed soil, or 
watering) where it would 
not persist under natural 
circumstances 

‘Ruderal’ records, if not 
removed, inflate the 
estimation of species natural 
range. This may create an 
incorrect bioregional signal 
if multiple species exhibit the 
same pattern (e.g. growing in 
urban gardens outside of 
their range due to watering, 
but cannot survive in 
surrounding native areas). 
However, this can be 
mitigated by removing all 
records from cleared/ 
modified locations.  

Table 1 (continued ) 

# Step in pipeline 
for addressing 
issue 

Quality Issue Consequence for 
biogeographic 
regionalisation 

10 Deduplication Record is duplicated, as a 
result of appearing in 
multiple source 
databases (termed ‘true 
duplicate’) 

In clustering-based 
bioregionalisation, species 
composition in blocks is 
calculated from species 
presence or absence (1s or 
0s), not abundance, so 
duplication does not affect 
the outcome. 

11 Deduplication Record shares exact same 
geo-coordinate with 
other records of the same 
species, but is different in 
dates. 

Analogous to issue #10. 

12 Outlier detection Geo-coordinate of a 
record is erroneous and 
placed outside the true 
species range 

Record appears in wrong 
location, creating incorrect 
signals in species 
composition of blocks. If 
such error is repeated across 
a number of species (e.g. if 
all records from a fungarium 
are geo-coordinated at the 
fungarium’s location), then 
false bioregion patterns may 
emerge. 

13 Outlier detection Geo-coordinate is 
erroneous (including 
cases where the 
coordinate is imprecise) 
but placed within the 
true range 

Record still appears in wrong 
location, but contributes to 
an ‘expected’ species 
composition profile of the 
bioregion, so such errors 
should not affect bioregion 
patterns. 

14 Outlier detection Species in record is 
misidentified as another 
species with different 
distribution 

Analogous to issue #12. 

15 Outlier detection Species in record is 
misidentified as another 
species with similar 
distribution 

Analogous to issue #13.  
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list are accepted, or if they are a synonym of an accepted name, in which 
case they are updated with the corresponding accepted name from the 
matched database. Where NSL disagreed with CoL, CoL names are kept 
because CoL contains more recently recognised/described species. For 
names at infraspecific rank (such as variety) that match neither database 
at first, we attempt rematch after removing infraspecific epithets. Names 
still matching neither of the databases are checked by co-author TM, 
who identifies and corrects names that are spelling errors or synonyms 
not yet trapped in NSL or CoL. The remaining non-matching names, 
which consist largely of manuscript names, non-fungi, or improperly 
formed names, are flagged for removal. In the name list, we also add 
higher taxonomy (i.e. phylum, class, order, and family; from either NSL 
and CoL, according to the source of the name) and guild, trophic mode, 
and growth form information. Information on guild, trophic mode, and 
growth form is obtained by matching names and their higher taxon-
omies against the FUNGuild dataset (Nguyen et al., 2016) – this is 
important for e.g. distinguishing lichenised and non-lichenised fungi. 

2.2.3. Pipeline step: species status of origin 
Species that are not native to Australia or native but displaying 

ruderal distributions may confuse bioregional signals and should thus be 
removed (see Table 1 for explanations, also see Pyšek et al., 2004). 
Because there is no checklist specifying which fungi are native to 
Australia that can be employed to match our species against, we can only 
assess origin status in our dataset using expert knowledge of TM, which 
can practically only be done for a small number of species due the size of 
the name list. This issue of unknown species origin is common for fungi 
across the globe, and the determination of species origins is likely a 
common need for users of repository fungi data. While the establishment 
of species origin databases is the necessary long-term solution, here we 
also explore if patterns observable in data can allow rapid sorting of 
species origins using a statistical learning model (Hastie et al., 2009). 
The basis of this idea is that species origin status correlates with species 
habitat preference (namely that native species are found more often in 
native habitat and exotic species more often in modified habitat), and 
this relationship is likely reflected in the observed frequency of species 
occurrence in different habitats. Therefore, we can train a model to 
recognise the relationship between species origin and occurrence fre-
quency in different habitats, and use the model to predict species with 
unknown origins. In Appendix A, we describe in detail our imple-
mentation of a multi-class random forest model (Cutler et al., 2007; 
implemented through the ‘randomForest’ package in R; Liaw and 
Wiener, 2002) for this prediction task. In summary, for each species we 
tabulate the percentage of records occurring in relevant land use and 
vegetation classes, then use those as predictor variables in a model 
where the response is the known native/exotic status of the species. We 
train and cross-validate the model using data for 483 species. When 
cross-validating model predictions against known origins, the model 
achieves good accuracy at predicting exotic species, with ~0.8 sensi-
tivity and perfect specificity (Hastie et al., 2009). Using this model, we 
predict the origin status of all species whose status is unknown, and flag 
for removal those that are (1) predicted to be exotic, (2) not lichens, and 
(3) having more than 50 records. We do not flag lichens because there 
are very few documented records of exotic lichens in Australia; we also 
do not flag species with <50 records because it is difficult to establish 
their habitat preference with just a few records. 

2.2.4. Pipeline step: deduplication 
We flag records that are duplicates of another record, either as ‘true 

duplicates’ (same species, same coordinates, same date), or as ‘spatial 
duplicates’ (same species, same coordinates, but different date). For this 
step, we use the original decimal degree coordinates rather than the 
reprojected coordinates. This step is important since some of our data 
sources are aggregators that combine other data sources, thus duplica-
tion is common. 

2.2.5. Pipeline step: outlier detection 
Some errors (e.g., misplaced coordinates, misidentification) are 

difficult to detect automatically, but manually checking every record is 
also impractical. Here, it is useful to prioritise records more likely 
erroneous, e.g., spatial and environmental outliers for each species. 
Outliers are worth detecting because: (a) outlierness can imply biolog-
ical improbability, and (b) erroneous but inlying records will likely not 
contribute greatly to biogeographic signals (Table 1). To detect spatial 
outliers, we calculate the Local Outlier Factor (LOF; Breunig et al., 2000) 
for each record using the ‘DDoutlier’ R-package (Madsen, 2018), then 
flag any record whose LOF is more than five standard deviation higher 
than the species-mean LOF. Rather than comparing the coordinates of a 
record to the central mass of species records, LOF measures how isolated 
a record is compared to its closest neighbours in terms of Euclidean 
distance. This neighbourhood-based approach is desirable for our 
application, because records without close neighbours are most worth 
checking – these are most biologically improbable but if proven valid 
they could signal undiscovered populations. To detect environmental 
outliers, we use the reverse jackknife method (using the ‘biogeo’ 
R-package; Robertson, 2016) to flag outlying records in terms of four 
climatic variables: annual averages and seasonality of temperature and 
Moisture Index. These variables and reasons for using them are 
described in detail in Appendix B. We use the reverse jackknife method 
because it is consistent with GBIF and ALA quality checks, which also 
report this approach to be successful at detecting erroneous outliers 
(Chapman, 2005). We perform spatial and environmental outlier 
detection for species with more than 30 records (1498 species), since we 
cannot establish outlierness for rarer species. We initially also attempt to 
validate the outliers through a supporting specimen or photograph, but 
such information is not readily available for most records. 

2.3. Using the pipeline to enhance data 

We use the pipeline to treat the fungal occurrence dataset, with the 
following steps. We first build a cleaned name list by excluding: species 
not matched with name databases (n = 166), species known to be exotic 
(n = 56), or flagged with exotic prediction (n = 46); this results in 7980 
issue-free names. We next build a cleaned dataset by first excluding any 
record not matching with the cleaned name list (n = 27,874), followed 
by spatial duplicates (n = 270,952), records occurring at least 100 m 
away from native vegetation (n = 30,661; inferred by the native vege-
tation layer described in Appendix A), and records flagged as both 
temporal and spatial outliers (n = 120). The resulting cleaned dataset 
contains 251,642 unique records – while this is only 24% of the original 
1,034,601 records downloaded, most of the removed records are iden-
tified at genus level or above, or are duplicated copies from different 
databases. 

2.4. Exploring the cleaned dataset 

We next analyse the cleaned dataset to reveal trends and patterns. 
We first focus on the breakdown of records and unique species over 
trophic guilds, basis of record, and time. Then, by binning records into 
100 by 100 km spatial blocks (875 in total over Australia), we create 
sampling ‘blocks’ and summarise the number of species and records over 
blocks. We also construct a species accumulation curve (Gotelli and 
Colwell, 2001) over all blocks (via the ‘vegan’ package in R; Oksanen 
et al., 2019) and, for the block with most records, a species accumulation 
curve over time. We next explore record coverage over nine environ-
mental variables relating to climate and soil properties, detailed in 
Appendix B. We first extract environmental conditions from all 100 km 
blocks and ordinate them in an environmental hyperspace generated by 
a principal component analysis (PCA). This allows us to examine the 
environmental overlap between blocks with records and blocks without, 
and discover if some unique environments are not yet recorded. To 
further map potential unrecorded environments at a finer resolution, we 
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next build a Multivariate Environmental Similarity Surface (MESS). 
MESS calculates the similarity between each cell in the environmental 
rasters and a reference set of environmental conditions at locations with 
records; this is useful for highlighting raster cells outside the environ-
mental range of the reference dataset (Elith et al., 2010). We build MESS 
with a 5-km resolution raster stack of the aforementioned nine variables. 
Next, we explore collector-related patterns in the dataset. We first assess 
the relationship between collection locations and accessibility to cities, 
as the latter is well-known to affect the behaviour of opportunistic col-
lectors (Mair and Ruete, 2016). Accessibility of collection locations to 
cities is extracted from a 1 km raster of estimated travel time to the 
closest city, produced by Weiss et al., (2018). We also extract ‘baseline’ 
travel times from 30,000 random points sampled across Australia, which 
we compare collection locations against. Finally, we also assess the 
number of records made by individual collectors, and map the spatial 
footprint of the most prolific collectors. 

2.5. Biogeographic regionalisation 

As a further exploration on how the cleaned data can be used to 
uncover biogeographic patterns, we use the data to infer biogeographic 
regions (defined as regions sharing similar species composition; Cox, 
2001; Mackey et al., 2008) using a clustering method (González-Orozco 
et al., 2014). We choose this analysis as a demonstrative use of our data 

because, while fungal bioregions of Australia have been suggested (May, 
2017), analytical approaches explicitly for mapping bioregions have not 
been applied previously. Using the software Biodiverse v.3.10 (Laffan 
et al., 2010), we first bin the data into 100 km blocks and construct a 
species-block matrix. Here, we exclude species occupying only one block 
and blocks containing only one species – these create noise interfering 
with the clustering method, and are not informative to the aim of finding 
contiguous groups of blocks with similar species composition. 543 
blocks and 3796 species were retained after this filtering. Using the 
Biodiverse built-in workflow, we calculate pairwise block-by-block 
species composition dissimilarity using Simpson’s beta diversity index, 
or S2 (Lennon et al., 2001), and then use the Weighted Pair Group 
Method with Arithmetic mean (WPGMA) clustering (Sokal, 1958) to 
group blocks accordingly. The results of clustering analyses are visual-
ised both on a dendrogram and on a map with colour-coded clusters, 
using Biodiverse. We then examine whether we could hypothesise 
clusters as bioregions, based on their spatial contiguity, and their 
distinctness from other clusters on the dendrogram. 

3. Results 

3.1. Data description 

The distribution of species in the cleaned dataset across trophic 

Fig. 2. Distributions of (A) taxonomic names and (B) records of Australian fungi across trophic guilds (Lichen = Lichenised; Sapro = Saprotrophic; ECM = Ecto-
mycorrhizal; Patho = Pathogenic & Parasitic; Epi-Endo = Epiphytic & Endophytic; Unclear = not assigned to a single guild according to FUNGuild). Floating numbers 
indicate counts of names or records. 
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guilds shows that lichens are most common both in numbers of species 
and records (Fig. 2). Saprotrophic (feeding on decaying organic matter) 
and ectomycorrhizal (plant symbionts) fungi are also commonly recor-
ded, followed by pathogens/parasites. Pathogens/parasites include both 
macrofungi such as Tremella fuciformis, Cyttaria gunnii, Chondrostereum 
purpureum and Marasmius crinis-equi (the former two are classified as 
parasites according to FUNGuild and the latter two as pathogens), and 
microfungi such as Batrachochytrium dendrobatidis. Endophytes include 
macrofungi such as Xylaria castorea and Annulohypoxylon truncatum. 
Species not designated to a single guild according to FUNGuild are 
designated as ‘unclear’. 

Lichens are unique in that their records are predominantly based on 
preserved specimens, whereas other fungi are commonly recorded by 
observations (Fig. 2B). These two collection modes also show different 
historical patterns, with specimens being more common in the past but 
observations rapidly taking over since the 1990s (Fig. 3A). Specimen 
collection-per-year has also decreased, although this could be explained 
to some extent by time-lag in digitising recent specimens. In terms of 
seasonality, non-lichen records are more common in the colder winter 
months, likely because these are the sporing seasons for many macro-
fungi, particularly in the well-recorded temperate south. In contrast, 
lichen records are mostly uniform across months (Fig. 3B), as most li-
chens have persistent sporing bodies that are observable throughout the 
year. 

In terms of spatial distribution, records aggregate towards coastal 
areas of Australia, or coincide with road infrastructure inland (Fig. 4). 

The island state of Tasmania has particularly high abundance of records 
(Figs. 4 and 5). This could partially be explained by exceptionally pro-
lific volunteer collectors known to be active in the area. However, it is 
also likely that Tasmania is a natural fungal diversity hotspot due to its 
wet and temperate climate and large tracts of intact remnant vegetation. 

Binning records into 100 by 100 km blocks revealed that recording 
intensity is highly variable across space (Fig. 5). Records are most 
abundant near Melbourne (capital city of Victoria) or Hobart (capital 
city of Tasmania), and the block with most records (n = 21,841) co-
incides with Melbourne. In contrast, 73 blocks contain only a single 
record each, and 168 blocks, mostly in the dry interior or the tropical 
north, contain no records at all. Although we also expected concentra-
tion of records in national parks, such patterns are not visible on a 
continental scale. 

In general, blocks containing more records also contain more species. 
The number of species increases with the number of records in a broadly 
logarithmic shape, but becomes more variable among blocks at higher 
record numbers (Fig. 6). The relationship does not appear to approach 
an asymptote suggesting that even the most visited blocks are far from 
saturation in species discovery. 

The curve of species accumulation over all blocks also exhibits log- 
like behaviour and is not plateauing for high number of blocks 
(Fig. 7A), indicating that new species are being discovered as more 
blocks are visited. For the block with the most records (geographic 
location shown in Fig. 6), species accumulation over time also does not 
plateau (Fig. 7B), indicating that new species keep being discovered 

Fig. 3. (A) Percentage of records of Australian fungi over years, the density area is shaded according to proportional basis of record. (B) Percentage of records 
over months. 
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Fig. 4. Locations (black dots) of 251,642 records of Australian fungi in the cleaned dataset, overlaid on top of travel time to closest cities (in hrs) in Australia (scale 
shown on right). 

Fig. 5. Log10-transformed count of records of fungi in the cleaned dataset, in 100 by 100 km blocks across Australia.  
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even in well-recorded blocks. While these trends could relate to rare 
species being discovered only with increased collection effort or new 
species being described over time, they also suggest an overall lack of 
saturation in collection effort across and within blocks, and that no 
blocks should be treated as entirely known (all species catalogued). 

We next explore collection coverage across environments. Although 
we initially suspect that some environmental conditions such as the dry 
deserts of interior Australia may be under-recorded, PCA ordination of 
blocks with no records vs blocks with at least one record in environ-
mental hyperspace reveal that blocks with no records largely overlap 
environmentally with blocks with records, in terms of the environmental 
variables considered (Fig. 8A; for details on environmental variables see 
Appendix B). The Multivariate Environmental Similarity Surface anal-
ysis also finds that most of Australia is within the environmental range of 
existing records (Fig. 8B). The negative areas on the MESS map highlight 
locations dissimilar to existing record locations, including: small pockets 
in central Australia (drier), western Tasmania (wetter throughout the 
year, more organic content in soil), and scattered discrete pockets in 
inland Australia with different soil attributes (e.g. the very small strip in 
mid-eastern Australia which has high soil Phosphorus). 

As suggested by our earlier observations on Fig. 4, collection pattern 
strongly correlates with travel time to cities. About half of all collection 
locations are within 2-h travel from cities, whereas less than 5% of 
randomly sampled locations in Australia are within the same distance. 
Records based on human observations also exhibit somewhat stronger 
affinity to cities than those based on preserved specimen, but both share 
generally similar patterns (Fig. 9). 

Finally, we report on individual collector patterns. A total of 7483 
unique collector names or ID numbers are discovered (4% of records 

have no collector information). Collectors contribute 34 records on 
average, but a small number of prolific collectors are highly influential, 
with the ten most prolific collectors contributing about half of all records 
– in Fig. 10 we map the collection footprints of some of these prolific 
collectors. Prolific collectors record most often around one area (likely a 
place of permanent or long-term residence), but many also record across 
their state or region (e.g., records for Pamela Catcheside & David 
Catcheside significantly diminished beyond the eastern border of South 
Australia; and for Gintaras Kantvilas and Genevieve Gates & David 
Ratkowsky records are predominantly from Tasmania, see Fig. 10). 
Prolific recorders may also be active in places far from home, often 
around major cities or along roads (Fig. 10). 

3.2. Biogeographic regionalisation 

The cleaned data can be divided into clusters that represent areas 
sharing similar species composition. In Fig. 11 (displaying the 9 highest 
level clusters based on dendrogram node length), we can observe two 
large contiguous clusters: southern coastal (orange) and central arid 
(blue). These are biologically sensible candidates of bioregions because 
they share similar shapes and boundaries with bioregions for other taxa, 
and because they correlate with climatic differences likely explaining 
species composition differences (Ebach, 2012). Smaller contiguous 
clusters are also observable, particularly along the east coast, and in the 
dry tropical northwest of Australia. These are promising clues to bio-
regions, but the lack of collection effort in these areas limit our ability to 
clearly map bioregional geometry, or to compare them to existing bio-
regions of other taxa. While preliminary, our bioregionalisation exercise 
reveals that cleaned fungal repository data are useful for uncovering 

Fig. 6. Number of species versus number of records for each 100 by 100 km block in the cleaned data. The block with most records (filled triangle) and the block 
with most species (filled circle) coincide with Melbourne and Hobart respectively – their locations in Australia are shown. 
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biogeographic patterns, but variation in collection effort means that the 
biogeographic information of some areas remains unclear or unknown. 

4. Discussion 

Our data cleaning results show that repository data for fungi indeed 
contain many quality issues, but these issues can be ameliorated by the 
use of a data curation pipeline and involvement of taxonomic expertise. 
Many issues in our data, such as unlinked synonyms, and unknown 
status of origin, relate to somewhat limited taxonomic curation in re-
pository datasets and the lack of region-specific species checklists, thus 
our results provide support for the importance of these endeavours. 
Moreover, we find that automating filtering with databases providing 
accepted taxonomies and nomenclatures do not resolve all taxonomic 
issues, and active expert curation of taxonomy can help recover/retain 
taxonomic names rejected by the automatic process, and spot issues not 
detected by automatic filtering, such as closely related species that are 
unidentifiable in the field on current knowledge. This highlights that, 
when cleaning data for taxa with frequent taxonomic changes or many 
newly described species, one cannot solely rely on automated pipelines 
targeting geographic issues (e.g. Serra-Diaz et al., 2018; Zizka et al., 
2019) – expert-curated taxonomic filtering is also essential. Finally, we 
find that predictive models are promising for detecting non-native spe-
cies, when such information is limited in a species dataset. This is a new 
methodology, and may be of broad interest. It should be explored 
further, with rigorous tests of model behaviour and performance. It 
would be enhanced by involvement of more experts and testing on data 
from other regions, to both provide more data for training the model, 
and to create some independent testing datasets. 

Our cleaned dataset reveals contrasting patterns between specimen- 
based and observation-based records. Consistent with studies on other 
taxa (Speed et al., 2018), specimen-based records are older, whereas 
observation-based records are more recent and growing rapidly. This is 

Fig. 7. (A) Species accumulation curve over all 707 blocks with records. The 
grey band represents variation from randomising the order at which blocks are 
added to the calculation 100 times, and the black line indicates the central 
trend. (B) Species accumulation curve for the block with the most records. 
Species accumulation is calculated by adding chronologically-ordered collec-
tion dates. The x-axis is scaled according to unique collection dates by years in 
which collecting occurred, reflecting that collection happened more frequently 
in recent years. 

Fig. 8. (A) Ordination of blocks with no records vs blocks with at least one record over the first two axes of Principal Component Analysis (PCA) transformed 
environmental space; loadings of environmental variables for the first two axes used are shown, for explanations of these variables see Appendix B. (B) Multivariate 
Environmental Similarity Surface (MESS) for the same environmental variables. The MESS map compares the environment of a given location against the reference 
environmental range of all the locations with records. Positive MESS values mean the location is inside the reference environmental range, and negative values mean 
the location is outside the reference range of at least one environmental variable. The range of values correspond to the degree of environmental similarity/ 
dissimilarity to the reference environmental range. Areas with negative values are of interest, since they represent environments unencountered by existing locations 
with records. The scale of MESS values is shown on the right, with orange values highlighting regions of negative MESS value. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 
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likely explained by technological advances allowing citizen science 
observers to submit observations digitally with increasing ease. The two 
collection modes also correlate strongly with taxonomy (lichens – 
specimens, non-lichens – observations), likely explained by the difficulty 
of preserving macrofungal sporing body specimens, the difficulty of field 
identification for many lichens (well-defined keys exist for lichens, but 
they often involve microscopic and chemical characters and are more 
amenable to be identified by experts), and stronger citizen science in-
terest in macrofungi compared to lichens. The lichen/non-lichen di-
chotomy also impacts the seasonality of specimen versus observation 
records (Fig. 3B) , because most observation records are made during 
ephemeral macrofungal sporing seasons. Finally, specimen collectors 
also tend to be professionally employed (typically lichenologists), 
whereas observers include many more citizen scientists. These con-
trasting patterns suggest that professional specimen collection for 
macrofungi is historically rare due to the challenging nature of the task, 
but emerging citizen science contributions substantially increase data 
availability, and provide important support for research on 
under-collected taxa such as macrofungi (Andrew et al., 2017, 2018; 
Wüest et al., 2020). 

Through our data exploration, we also identify the locations of 
collection gaps in terms of space and environments. Spatial collection 
gaps are observed throughout the dry interior and tropical north (Figs. 4 
and 5), likely explained by remoteness and the lack of road access 
making them difficult to visit for opportunistic collectors. In contrast 
with the patchy spatial collection coverage in central and northern 
Australia, environmental collection coverage in these areas is more 
complete, with only small patches of unrecorded environments (Fig. 8). 
This is an important sign that, although many locations are unvisited, 
they are environmentally similar to visited locations. This suggests that 
species occurrence in these unrecorded locations can be interpolated 
with tools such as species distribution models (Elith and Leathwick, 
2009). Nevertheless, such endeavours still require adequate amount of 
data to accurately model species-environment relationships (Guisan 
et al., 2017), so it is still important to collect more data in the 
under-recorded central and northern Australia. Interestingly, western 
Tasmania also contains unique unrecorded environments (Fig. 8), 
despite high collection effort in other parts of Tasmania. This shows that 
collection gaps are not necessarily far from areas with records, and that 
exploring data coverage in environmental dimensions is important for 
revealing details overlooked by spatial explorations. Finally, an impor-
tant caveat is that our observations on environmental coverage are 
based on a set of environmental variables believed to be generally 
relevant for fungi (e.g. a similar set of variables were used to model 
fungal productivity in Morera et al., 2021), but different collection gaps 
likely exist across different environmental gradients. Data users 

interested in exploring different environmental patterns should also test 
the coverage of their chosen environmental variables, using tools such as 
MESS maps. 

The widespread spatial recording gaps and the lack of species satu-
ration across all blocks mean that more collection is needed both for 
discovering new species even in places with many records, and for 
exploring under-recorded regions. As citizen science observations are 
now the most important contributors of new opportunistic data 
(Fig. 3A), we could benefit substantially from improving citizen science 
collection protocols to maximise the usefulness of future data. For 
example, methods are available for directing citizen scientists to areas of 
highest interest, using a marginal value framework (Callaghan et al., 
2019a, 2019b). Such efforts of coordinating target locations with citizen 
scientists are especially applicable to our Australian dataset, because 
there are many spatial gaps to fill, and because prolific naturalists and 
scientists are known to be willing to travel far and wide to make ob-
servations and collections (Fig. 10). In addition, the quality of citizen 
science data can be enhanced by improving identification skills of 
involved volunteers, through e.g., organising identification workshops, 
publishing guides and lists of target species, and providing logistical and 
material support. In particular, lists of target species can focus on species 
identifiable in the field, and warn observers about morphologically 
indistinguishable species whose identification require microscopy or 
sequencing. Finally, specimen collection can also aid citizen science by 
providing voucher material for validation, particularly for outlying ob-
servations far from confirmed specimens – such outlying records are 
suspicious, but they could also signal previously unknown populations. 

In addition to citizen science, professional collection is still required, 
particularly for locations rarely visited by opportunistic volunteer col-
lectors, and species difficult to detect or identify by volunteers. For such 
efforts, environmental DNA (eDNA) sampling of soil is a relevant 
method – in Australia, a large amount of eDNA data is already available 
through the BASE project (Bissett et al., 2016). Unlike observation and 
specimen data, eDNA recording has the ability to record the presence 
and absence of a large number of unique sequences from each sample, 
and can detect species undetectable from sporing bodies (not sporing, 
sporing very rarely, or sporing bodies hard to detect, i.e., truffles). 
However, eDNA-specific issues, including false presences from dead 
genetic material, merged or split species in processed operational 
taxonomic units, and lack of sequenced reference specimens to identify 
sequences against, could lead to erroneous biogeographic inferences, so 
the suitability of such data for studying biogeography needs to be 
thoroughly explored (Hao et al., 2020). 

Although links between fungal assemblages and bioregions have 
been explored (Cassis and Laffan, 2017), our biogeographic region-
alisation appears to provide the first analytical evidence for the 

Fig. 9. Histogram of locations with records over travel time to cities in Australia. Each bar corresponds to 1-h travel time and is shaded according to proportional 
basis of record. The black curve represents background travel time to cities from random locations in Australia. 
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Fig. 10. Log10-transformed record density in 100 by 100 km blocks for a selection of prolific collectors.  
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existence of fungal bioregions. This is an important first step towards 
understanding continental-scale fungal biogeography in Australia and 
elsewhere. The shape and boundaries of fungal bioregions deserves 
further exploration, to enable research questions such as comparing 
fungal bioregional boundaries with those of other taxa (e.g. plants in 
González-Orozco et al., 2014). While our preliminary analysis using a 
clustering-based method could only determine regional geography in 
record-abundant portions of Australia, more complex regionalisation 
methods based on predictive statistical models may interpolate better in 
record-poor areas. Compared to clustering methods based only on spe-
cies composition in blocks, model-based approaches, such as finite 
mixture models (Dunstan et al., 2011), also use environmental variables 
as inputs, to model the relationship between species occurrences and the 
environment. These models are then able to interpolate species 
composition profiles in unrecorded areas by predicting species occur-
rences as the response to local environment (Woolley et al., 2013). The 
suitability of such methods for our dataset is further supported by the 
good environmental coverage of our data (Fig. 8). However, because 
such methods are more complex than simple clustering (e.g. need to find 
appropriate environmental variables for predicting fungal occurrence 
across the continent, and the use of specialised multivariate modelling 
techniques), we will explore them in future works. 

In conclusion, through our case study of Australian fungi, we showed 
that repository data need to be and can be cleaned, and we developed 
data cleaning scripts and methodologies applicable for use in any 
geographic region. The cleaned data in this study revealed interesting 
biological patterns across space, time and species, and also supported 
preliminary hypotheses on Australian fungal bioregions. Overall, our 
result provides support for the usefulness of repository data – when used 
with appropriate attention to data cleaning and exploration, repository 
data can be a valuable resource in biogeographic research, particularly 
for those under-studied taxa lacking alternative biological data sources. 
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