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Understanding and describing the diversity of living organisms is a great challenge.

Fungi have for a long time been, and unfortunately still are, underestimated when it

comes to taxonomic research. The foundations were laid by the first mycologists through

field observations. These important fundamental works have been and remain vital

reference works. Nevertheless, a non-negligible part of the studied funga escaped their

attention. Thanks to modern developments in molecular techniques, the study of fungal

diversity has been revolutionized in terms of tools and knowledge. Despite a number of

disadvantages inherent to these techniques, traditional field-based inventory work has

been increasingly superseded and neglected. This perspective aims to demonstrate the

central importance of field-based research in fungal diversity studies, and encourages

researchers not to be blinded by the sole use of molecular methods.
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INTRODUCTION

Wemust collect, collect, and collect.
—Richard P. Korf (Reinventing taxonomy, 2005)

When we want to understand ecosystems and how they work, fungi are a keystone group. They
contribute to many important ecological processes, as nutrient recyclers, dominant decomposers,
regulators of the natural environment, andmutualists (Dighton, 2003; Bardgett and van der Putten,
2014; Powell and Rillig, 2018), and are indispensable elements in the composition and functioning
of ecosystems (Christensen, 1993).
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Fungi are found in practically all ecosystems and their
predominance facilitates interconnectivity with other groups of
organisms, constituting a considerable diversity of associations
(Hock, 2012). Most of these are poorly studied, such as
certain endophytic associations with plants (Dastogeer and
Wylie, 2017), and many mysteries remain to be discovered
regarding particular associations, including insect–fungal (Vega
and Blackwell, 2005; Haelewaters et al., 2021a), algal–fungal
(Hawksworth, 1988), bacterial–fungal (Deveau et al., 2018), and
bat–fungal associations (Cunha et al., 2020). Some of them result
in tripartite (e.g., Cardoza et al., 2006; Afkhami and Stinchcombe,
2016; Haelewaters et al., 2018) or even quadripartite (e.g., Currie,
2000; Piepenbring, 2015) interactions. Many associations are yet
to be discovered, since only 2–6% of the estimated 2.2–6 million
species are formally described (Taylor et al., 2014; Hibbett et al.,
2016; Hawksworth and Lücking, 2017).

Due to “the magnitude of fungal diversity” (fide Hawksworth,
2001) and the large number of existing threats facing them,
fungi should be an important conservation priority (Moore
et al., 2001; Heilmann-Clausen et al., 2014). Paradoxically, the
fungal kingdom has only very recently received a slight interest
in international or national programs for the protection and
conservation of biodiversity (Velázquez et al., 2010; Sadiković
and Kuštera, 2013), especially when it comes to little-studied
morphological groups such as microfungi (Arnolds, 2001;
Gonçalves et al., 2021). To date, only 0.0091 to 0.025% of the
estimated fungal diversity have an assessed conservation status
(IUCN, 2022). Growing awareness of the lack of consideration
and equivalence toward the fungal kingdom has prompted the
launch of a global initiative to make fungi one of the priorities
within conservation and agricultural policy frameworks: the
FF&F proposal, Fauna, Flora, and Funga (Kuhar et al., 2018).

These initiatives, combined with a renewed interest in
fungi transcending the boundaries of the scientific community
(Irga et al., 2018), have raised a broader awareness of the
knowledge gap in worldwide fungal biodiversity. Studying fungal
biodiversity introduces considerable challenges in terms of
ecological, taxonomic, systematic, and phylogenetic knowledge,
and of fungal protection, conservation, and enhancement
(Hibbett et al., 2016). Indeed, knowing what one is protecting
allows one to protect it better—an important challenge
considering the complexity of fungal identification and ongoing
conflicts regarding species concepts (Lücking et al., 2020).

Methods for studying fungal biodiversity have evolved
dramatically since mycology emerged as a scientific discipline.
From an initial focus on field inventories and macroscopic
observations, mycologists progressed to examinations of
cellular structures, made possible by the advent of light
microscopy. Electron microscopy later allowed for the analysis
of ultrastructural characteristics, and, in recent decades, DNA
characteristics can be evaluated due to the development of
molecular techniques such as high-throughput sequencing
(Schmit and Lodge, 2005; Oberwinkler, 2018). With increasingly
complex methods and ever-growing quantities of data, there
has been a trend for mycologists to become more specialized in
dealing with particular subfields such as cytology, physiology,
species delimitation, phylogenetics, phylogenomics, comparative

genomics, ecology, et cetera. As a result, traditional field
inventories, morphological investigation for identification, and
alpha taxonomy are frequently neglected in favor of molecular
methods and sequence data (Drew, 2011; Ríos-Saldaña et al.,
2018).

THE MOLECULAR ERA: NEW INSIGHTS IN

FUNGAL DIVERSITY

Taxonomic investigations of fungi based on morphological
features of sexual and/or asexual states (teleomorph, anamorph)
were challenging up until the early 2000s, because anamorph–
teleomorph connections were often difficult to assess and
many morphological characteristics are prone to convergency
or are indistinguishable (e.g., yeasts, conidiogenesis). Taxa were
classified within frameworks that were useful for that time but not
necessarily phylogenetically informative—as was later discovered
(e.g., Taylor et al., 2000). For example, the red-pigmented yeasts
were traditionally grouped into Rhodotorula and Sporobolomyces,
two asexual genera that are highly polyphyletic in their original
sense, with many species having been combined in other genera
(Fell et al., 2000; Aime et al., 2006; Bauer et al., 2006; Haelewaters
et al., 2021b). Cryptic (i.e., morphologically identical) species can
only be differentiated by a molecular (DNA) approach (Lücking
et al., 2014).

Important developments of molecular methods have allowed
fundamental advances in many fields of mycology (Morange
et al., 1998). DNA barcoding (Kress and Erickson, 2012) has
emerged as a tool to help differentiate and identify fungal
collections, and may reveal morphologically and ecologically
unpredictable systematic relationships (e.g., Gómez-Zapata
et al., 2021). It has become the norm in taxonomy and
phylogenetic studies, and is also being used in other subfields
such as ethnomycology (Teke et al., 2018) and paleomycology
(Bernicchia et al., 2006). Open-access sequence databases such
as NCBI GenBank (https://www.ncbi.nlm.nih.gov/genbank/)
have allowed for quick and easy identifications of sequenced
specimens based on multiple molecular markers. By using base-
pair sequences of DNA as characteristics to discriminate species
and individuals, aided by high throughput sequencing techniques
(e.g., Edwards et al., 2006), molecular approaches have become a
vital component of studies in fungal diversity (e.g., Anderson and
Cairney, 2004; Dentinger et al., 2016; Gafforov et al., 2017, 2020;
Haelewaters et al., 2018; Dirks and Russell, 2020), biology (Oliver
and Schweizer, 1999; Osiewacz, 2002), evolution (Bruns et al.,
1991; Berbee and Taylor, 2001, 2010; Fraser and Heitman, 2004;
Spatafora et al., 2018; Butler et al., 2021), biogeography (Peay
and Matheny, 2016; Wang et al., 2021), and ecology (Weiss et al.,
2004; Peay et al., 2008; Peay, 2014; van der Linde et al., 2018).

Metagenomics is the analysis of the collective genomes
of organisms in their natural environment independent of
specimens (Nilsson et al., 2019). The use of environmental DNA
(eDNA) has revealed new branches of the Fungal Tree of Life
(Tedersoo et al., 2014; Khan et al., 2020) and presented evidence
of cryptic fungi in many environments (Jones et al., 2011; Baeza
et al., 2017; Léveillé-Bourret et al., 2021; Runnel et al., 2021).
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The use of eDNA in biodiversity studies has made it possible to
obtain new understandings of hitherto hidden fungal diversity
within any given ecosystem. Without new mass sequencing
technologies, the discovery of fungal communities present in air
(Rosa et al., 2020), snow (Penton et al., 2013; Rosa et al., 2020),
aquatic ecosystems (Grossart et al., 2019), biotic substrates (e.g.,
plants, insects, animals), and even abiotic substrates (e.g., rocks
Bjelland and Ekman, 2005; Egidi et al., 2014; Selbmann et al.,
2014; Liu et al., 2021) would not have been possible.

In addition to being crucial to basic fungal research, molecular
tools also contribute to applied fungal research, as in forest
management (Glaeser and Lindner, 2011; Stewart et al., 2018;
Hagge et al., 2019; Purahong et al., 2019; Tomao et al., 2020)
or ecosystem restoration programs (Nuñez et al., 2021). Other
questions have recently been re-evaluated thanks to molecular
techniques, such as the impact of natural (Vargas-Gastélum
et al., 2015; Pérez-Izquierdo et al., 2020) and anthropogenic
(Borriello et al., 2012; Lienhard et al., 2014; Tomao et al., 2020;
Kim et al., 2021) disturbances on fungal diversity. Through
the detection of endangered species (Gordon and van Norman,
2015), molecular methods have also enabled a new appreciation
of fungal conservation priorities (Geml et al., 2014).

There now is a common consensus that human activities
and their predicted intensification in coming decades are severe
enough to represent a sixth ‘Anthropocene’ mass-extinction event
(Barnosky et al., 2011; Ceballos et al., 2015; IPBES, 2019).
Associated biodiversity declines will include the fungi specific to
the affected habitats (Antonelli et al., 2020), hence the urgent
need to identify these at-risk species swiftly, so actions can be
taken to protect them.

LIMITATIONS OF MODERN METHODS

Despite recent improvements in molecular biology, important
limitations must be taken into account. The identification of
fungi based solely on sequence analysis presents great risks
and can lead to false identification (Haelewaters et al., 2018;
Hofstetter et al., 2019) and erroneous ecological conclusions
(Wutkowska et al., 2019) including under- or overrepresentation
of fungal groups in biodiversity surveys (George et al., 2019).
Defining species boundaries accurately is crucial for diversity
estimations as it determines whether organisms are members
of the same phylogenetic group. Notwithstanding, many fungi
are only known from metabarcoding studies (Wu et al., 2019)
and cannot be accommodated within the current framework
of fungal nomenclature due to lack of physical specimens or
cultures that can serve as types (Ryberg and Nilsson, 2018).
The valid publication of new names (sensu Turland et al., 2018)
recommends specimen-based molecular methods. However,
the cultivation approach favors rapidly growing fungi (e.g.,
Penicillium) and excludes biotrophic species (Zhang et al., 2010;
Cordier et al., 2012).Methods for isolation can also skew diversity
estimates, e.g., the choice of growing medium.

Indeed, the success of identifying species based on sequences
available in GenBank greatly depends on the amount of available
reference sequences (Nilsson et al., 2006). No or very few
reference sequences are available for many rare and threatened
fungal species as well as poorly known fungi in unexplored

geographic areas (Piepenbring et al., 2018; Haelewaters et al.,
2021c). This has direct consequences on our understanding of
fungal diversity and phylogenetic relationships, as topologies are
strongly influenced by taxon sampling. An increasing number
of sequences not identified to species level or identified as
“uncultured fungus” are present in online sequence databases;
this, too, makes molecular-based identification problematic
(Hibbett et al., 2011; Nilsson et al., 2014). Nevertheless,
efforts have been made to maximize the probability of
accurate sequence-based identification, e.g., the UNITE database
(Abarenkov et al., 2010) and the use of the term “species
hypothesis”—a cluster of sequences that share 97–99% similarity
(Kõljalg et al., 2013). However, despite these advances, the
greatest challenge in fungal identification and barcoding will
mostly, but not only, remain of a taxonomic nature (Nilsson et al.,
2006).

The success and efficacy of molecular protocols, including
DNA extraction, PCR amplification, and sequencing can
be questionable, which may lead to partial or poor-quality
sequences. DNA extraction remains difficult for certain fungal
groups, requiring specialized protocols or modifications of
standard kits (Haelewaters et al., 2015; Sundberg et al., 2018;
Meswaet et al., 2021). PCR amplification may depend on
taxon-specific primers to target universal or secondary (meta-)
barcoding markers (Liu et al., 2020; Reynolds et al., 2021) that
are selective for certain taxa. In fungal groups where the internal
transcribed spacer (ITS) region of the ribosomal RNA gene
does not provide sufficient resolution, secondary DNA barcodes
need to be used, representing additional inputs of time and cost
(Lücking et al., 2020).

In addition to the pitfalls in sequence-based identification and
current public sequence databases, homopolymer regions are also
problematic. In addition to practical and technical issues, the use
ofmolecularmethodsmay lead to statistical problems, such as the
question of the normalization of fungal taxa abundance among
samples (McMurdie andHolmes, 2014;Weiss et al., 2017; Lin and
Peddada, 2020).

Lack of funding and training is also a major concern.
Molecular work is expensive and highly specialized, and requires
specific equipment not available for many mycologists (Hibbett
et al., 2016). This is a problem especially in remote and
understudied areas in the tropics (Haelewaters et al., 2021a,c)
and some temperate zones, such as Central Asia (Gafforov, 2017;
Cheek et al., 2020; Abdurazakov et al., 2021).

FIELD-BASED RESEARCH: THE

SOLUTION?

Field surveys are one of the oldest and most fundamental
techniques for studying biodiversity, through the observation
and description of biological organisms living on Earth.
Unfortunately, their value as viewed by the scientific community
has diminished and today species records are rarely a priority
for researchers. A decline in the relative importance of field-
based science has been observed in most taxa (Ríos-Saldaña
et al., 2018). This may be particularly acute in mycology,
perhaps due to the cryptic nature of fungi, resulting in tedious
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and costly species identifications that require expertise from
mycologists, taxonomists, and evolutionary biologists. This
is a worrying trend, given field surveys generate essential
new information that cannot be obtained through the prism
of sequencing, and are ideal instruments for training the
next generation.

Taxonomy
Alpha-taxonomy (i.e., taxonomy in its historical sense)
establishes taxonomic units based on phenotypic traits (Simpson,
1960). Traditionally, this was achievedmainly by the presentation
of monographs and allowed for the study of the variability of
informative characteristics. Diagnosable morphological features
can be attained rapidly in the field as well as by light microscopy
in the lab, and multiple specimens of species warrant insights
into morphological variation, which forms the basis of species
delimitation (Noordeloos and Antonín, 2008; Kerekes and
Desjardin, 2009; Phengsintham et al., 2013). Some characteristics
important for the morphological identification of species can
only be observed on freshly collected specimens, including the
original color, taste, smell, chemical reactions, e.g., in the case
of fruiting bodies of Russula spp. (Adamčík et al., 2019), and
the organization of oil drops in ascospores (Baral, 1992). Field
survey methods (Mueller et al., 2004) allow access to macro-
and micro-morphology of a given taxon that is combined with
previously or newly generated sequences. This “fusion” between
phenotypic and molecular genetic data, referred to as integrative
taxonomy (Dayrat, 2005; Pante et al., 2015), is essential for
species delimitation and, thus, formal description of taxa new to
science (Simões et al., 2013).

Geographic Records of Known Species
Despite a generalized decline in the importance of traditional
taxonomic research (Drew, 2011), new records of known species
should be properly documented and published. To establish a
species concept new to science is easy, but it is more valuable to
apply an old name to a new collection, although this takes more
time and effort. As a result, the new information is connected to
existing data. With every new collection, the knowledge of any
given species is improved; this includes infraspecific variation
of morphological and molecular characteristics, interaction with
other organisms (host range in the case of pathogens), and
geographic distribution. A high number of geographic records
are required to become aware of changes in distributional
areas and general patterns of spatial distribution, which is
critical in the light of climate change and for species that
are disease agents of humans, animals, or cultivated plants.
Good knowledge of geographic distributions is indispensable for
phylogeographic studies and forms the basis of assessments for
the International Union for Conservation of Nature (IUCN) Red
List of Threatened Species and designation of Alliance for Zero
Extinction (AZE) sites (https://zeroextinction.org/).

Ecology
Opportunistic field sampling, the most common approach used
by citizen scientists (Mueller, 2017), can be of great value with

regard to fungal studies, particularly when exploring poorly-
studied and remote locations (Rivas-Ferreiro, 2021). Long-
term field monitoring, however, has the potential to generate
longitudinal datasets necessary to understand the role of fungi
in ecosystems. Not only do data from such monitoring studies
enable hypothesis-driven research (Korf, 2005), they inform
on fungal reproduction (i.e., sexual states), phenology (e.g.,
Jumbam et al., 2019), life cycles (i.e., methods of spore dispersal),
nourishment (i.e., saprophytic, endophytic, etc.), and functional
diversity. Ecological monitoring also reveals key information
about ecological adaptations, i.e., insects attracted by volatiles
(Davis and Landolt, 2013), nematode-trapping structures (Zhang
et al., 2013), secotioid basidiomata as adaptations to dry
environments (Claridge et al., 2000a,b), the dominance of
sporocarps in periods with high precipitation (e.g., López-
Quintero et al., 2012; Piepenbring et al., 2015), et cetera.

Traits
In addition to capturing ecological information as outlined
above, observations made in the field allow to integrate biotic
and abiotic data, resulting in information critical for fungal
conservation studies. This includes ecological observations
concerning the relevance of, e.g., climate (temperate, tropical),
seasonality, weather, environmental factors (pH, water, nutrient
availability, substrate, soil characteristics), and habitat, as well
as insights concerning dispersal strategies, interactions with
other organisms (natural enemies, hosts), and responses to
anthropogenic pressures. These data also facilitate the discovery
of abiotic and biotic connections between fungal clades and
biodiversity more broadly (Kendrick, 2011; Peay et al., 2016).
Meta-analysis and ecological studies rely on key spatial data
obtained from surveys (Shrestha and Bawa, 2014; Yan et al.,
2017) and temporal variations of fungal diversity governed by
natural and anthropogenic environmental change can advise
conservation efforts (Haelewaters et al., 2021c; Kaishian, 2021).

Cultures
Field surveys allow the isolation of fungal collections from
habitats such as plant leaves, fruit skins, and insect guts that
are common sources of endophytes, yeasts, and yeast-like
fungi, often representing untapped diversity preserved in a
metabolically inactive state (Boundy-Mills et al., 2015; Sharma
et al., 2019). From here, results obtained by molecular methods
can be supplemented with morphological characteristics
(including photographs of colonies on distinct culture media;
Pitt et al., 1983), spectral analyses (Petisco et al., 2008; Rodrigues
et al., 2011), recognition of anamorphic and teleomorphic states
(Hawksworth, 2011), and screening for biochemical profiles (Suh
et al., 2008).

Fungarium Collections
Specimens collected through field surveys are often deposited in
fungaria, after having been slowly dried, packaged, and labeled.
Fungarium collections represent a treasure trove of data because
they represent traces of past and current species diversity and
occurrences (Paton et al., 2020). Even if unidentified, fungarium
collections may be useful for future researchers who may
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investigate morphological or molecular characteristics (Brock
et al., 2009; Osmundson et al., 2013; Dentinger et al., 2016).
Specimens from field surveys, as a best practice, are accompanied
by field notes with information about characteristics that are
only present in situ (e.g., hygrophany, smell, substrate) or that
are no longer observable after drying (e.g., chemical reactions,
colors, texture).

Checklists
The value of checklists resulting from field surveys is increasingly
appreciated by many researchers worldwide (Piepenbring et al.,
2011, 2020; Haelewaters et al., 2021c). A checklist of fungi for a
given area presents information about the history of mycological
research in that area, generates data necessary to compare
the area with other regions with respect to species diversity,
helps to detect and monitor invasive species, and advances
taxonomic research with new collections of “forgotten” species
or “old names” (Piepenbring et al., 2020). Some researchers
have made it a matter of principle to publish fungal species
checklists (e.g., Marinho et al., 2018; Diederich and Ertz, 2020;
Fryar et al., 2020). This helps fill the knowledge gaps on
fungal diversity, particularly in under-sampled regions. Recent
funded initiatives have highlighted the critical value of publishing
checklists supported with molecular data (e.g., Haelewaters
et al., 2018; Gafforov et al., 2020); we highly encourage
our mycological colleagues to do the same. Fungal species
occurrence data, whether from protected areas or public lands,
through amateur or grant-funded, scientific surveys, are critical
to science.

Training
Field-based projects can and should bring together researchers
spanning junior to senior scientists as well as students and
interns from diverse backgrounds. Teaching in the field is an
effective way to educate young mycologists. Collaborators in
the area may identify interested and talented students who will
participate in every part of the research, in addition to local
people to be trained as parataxonomists. Such education should
go further than collecting fungi; it may include seminar talks by
senior participants, presentations by more experienced students,
interactions in the field, and laboratory work (Piepenbring and
Yorou, 2017).

UNITY MAKES STRENGTH: ONWARD

TOGETHER!

Fungal diversity can only be unraveled and interpreted by
combining molecular and organismic approaches that take into
account the complexity and wholeness of members of the
kingdom. In the field, only a small part of the existing fungal
diversity can be seen through above- or belowground spore-
bearing structures that are easily observed. A bias exists toward
well-known species of “macrofungi” (Gonçalves et al., 2021).
Indeed, “microfungi”—e.g., endophytes, epiphytes, arbuscular
mycorrhizal fungi, coprophilous fungi—are neglected in fungal
diversity and conservation studies. Most fungal diversity resides
underground and in living or dead organisms, by means of

hyphal networks, most of them unable to produce sporocarps
(Halme et al., 2012). The vast majority of fungal taxa studies are
only possible by combining molecular and field survey methods
to an integrative double-sided focus.

In order to know the funga worldwide, we need field survey
projects, particularly in poorly studied areas. Funding programs
focusing on fieldwork, capacity building (to provide access to
molecular equipment, especially in the tropics and the Global
South), and taxonomy are key. An example is the U.S. National
Science Foundation Poorly Sampled and Unknown Taxa
(PurSUiT) category. In addition, grants should include funds to
hire specialized taxonomists to accelerate species identifications.
In remote areas lacking mycologists, such as in most of the
tropics, Indigenous people may possess ancestral knowledge on
fungi. To go further, wemust encourage the establishment of field
surveys by actively soliciting contributions of local communities.
Such integrative parataxonomy can be of great value in terms
of knowledge and scientific popularization. In the same vein,
integrative taxonomy is directly linked to the use of this powerful
combined method. Taxonomy should be based on a combination
of molecular phylogenetic, morphological, and ecological data.
Fungal biodiversity or ecological studies based on molecular data
only, or equally without such molecular sequence data, can be
considered as partly “blind.”

In every fungal diversity study, the collect-and-sequence
approach (Truong et al., 2017) should be employed as standard.
Where these two main methods are employed together, new
perspectives can be explored. For example, eDNA and field
surveys can be complementary tools when it comes to studying
fungal communities and forest management (Yan et al.,
2018). Cryptic fungi (e.g., soil fungi, epiphytes, endophytes)
that cannot (or are very difficult to) collect or culture on
axenic media can be molecularly identified and associated
with ecological information (seasonality, spatial distribution)
through employing an integrated methodology. We do note
that for a few ecosystems, molecular approaches remain our
best bet. For example, desert ecosystems, Antarctica, deep sea
sediments, and other extreme ecosystems, where sporocarps
are never seen and for which culturing techniques are very
challenging (i.e., culturing of fungi under high pressure, or
under very specific nutrient availability). Likewise, some taxa
that we have failed to find in metabarcoding studies and
that are unculturable but that can be readily observed and
collected in the field, may continue to benefit from “traditional”
taxonomic studies.

Integrative methodologies are crucial for improving our
understanding and knowledge of global fungal diversity, both
from a fundamental and applied research perspective. Indeed,
integrative approaches are poised to become even more crucial
for fungal conservation as new initiatives arise to protect
fungi (Kuhar et al., 2018) and to consider all fungal species
in biodiversity goals (Gonçalves et al., 2021). Only a tiny
fraction of the total fungal biodiversity on the planet is known,
and there is a huge need (i) to improve our understanding
of the fundamental role of fungi in the functioning of
ecosystems, (ii) to characterize the patterns of the distribution of
biodiversity and the dynamics of fungal communities, whether
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within endangered habitats or not, (iii) to improve taxonomic
knowledge, and (iv) to fully integrate the fungi into global
conservation networks, such as the IUCN Red List, AZE sites,
and Key Biodiversity Area (KBD) designations. Before it is
too late.
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