
he genus Leotia Pers. contains species of inopercu-
late discomycetes with stipitate-capitate ascomata
that are constructed, at least in part, of tissues built-up

of hyphae imbedded in a gelatinous matrix. The genus has
been placed in the Geoglossaceae (DURAND 1908) but later
was moved to a broadly conceived family Helotiaceae (KORF

1958). The family Helotiaceae was later reformulated as the
Leotiaceae (KORF 1973). The family Leotiaceae and the order
Leotiales have undergone several reinterpretations (KORF,
ITURRIAGA & KIZON 1996, LIZON, KORF & ITURRIAGA 1998,
KORF & LIZON 2000, 2001). These revisions were aimed at re-
stricting the family Leotiaceae to a small number of genera
that had gelatinous tissues associated with the outer excipu-
lum. Ultimately, KORF & LIZON (2001) recognize the order,
Leotiales, with a single family Leotiaceae for Leotia and se-
veral genera with this gelatinous construction. The position of
the genus Leotia among the Ascomycota is not fully resolved.
BARAL (1999) found the grouping of taxa suggested by Korf
and co-authors unsupportable on morphological grounds.
Ultrastructural studies by VERKLEY (1994) indicate that asci
of Leotia lubrica are distinctive among the inoperculate dis-
comycetes. Molecular phylogenetic studies have shown that
Leotia species form one of several lineages among the in-

operculate discomycetes (LANDVIK, SHAILER & ERIKSSON

1996, LANDVIK, KRISTIANSEN & SCHUMACHER 1998, GERNANDT

et al. 2001). LSU and SSU rDNA sequence analyses revealed
a close relationship between Leotia and Microglossum Gil-
let (GERNANDT et al. 2001), a taxon traditionally placed in the
Geoglossaceae.

Microscopic characters show little consistent variation
among species of Leotia; species delimitation has been based
largely on ascomatal color patterns. Most authors have fol-
lowed the nearly century old concepts developed by DURAND

(1908). He named the species with entirely yellow ascomata
L. lubrica (Scop.) Pers. Those species with green hymenia and
yellow stalks were called L. stipitata (Bosc) J. Schröt. (now
named Leotia viscosa Fr.) and those species with entirely
green ascomata were referred to as L. chlorocephala Schw.:
Fr. (now called L. atrovirens Pers.: Fr.). These widely used
concepts have been modified only slightly by subsequent in-
vestigators (NANNFELDT 1942, MAINS 1956, GRUND & HAR-
RISON 1967). These authors noted ambiguities and difficulties
regarding species delimitations, as did DURAND (1908), who
stated that identification of these fungi should only be done
from fresh, living material. 

A different approach to species delimitation was taken by
IMAI (1936). He stated that the variability in ascomatal color,
size and form was related to habitat and developmental stage.
He recognized a single species, L. lubrica, and treated L. vis-
cosa and L. atrovirens, as forms of L. lubrica. Later, he (IMAI

1941) recognized eleven forms of L. lubrica and one species,
L. rutilans (S. Imai & Minakata) S. Imai. TAI (1944) raised
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six of Imai's forms to species level and added four new spe-
cies. In general, new species and forms of Leotia have been
described based on limited anatomical or morphological
features (VELENOVSKY 1934, IMAI 1936, 1941, TAI 1944,
BENEDIX 1955, MAINS 1956, OTANI 1982).

The purpose of our study was to investigate the inter-
and infraspecific variation in the more common forms of Leo-
tia using molecular characters. To assess this variation we
used a series of geographically disjunct collections. Specifi-
cally, molecular sequence data were used to assess the utility
of ascomatal color as a species character. We sequenced ITS
rDNA and a variable region of the RPB2 gene. The ITS re-
gion has been widely used in phylogenetic studies at the spe-
cies level; the protein-coding gene RPB2 has been used at
the level of genus and above (LIU, WHELEN & HALL 1999,
ZHANG & BLACKWELL 2001). As part of this study we were
able to test the utility of this variable region of the RPB2 gene
in a species level study. 

Material and methods

Material studied

33 collections of Leotia species from localities worldwide
were studied (Tab. 1). Collections were identified following
DURAND’S (1908) classification that primarily uses ascomatal
color to delimit species. Microglossum viride (Pers.: Fr.) Gillet
and M. rufum (Schw.) Underw. were used as an outgroup. The
selection of outgroup taxa was based on results indicating that
Leotia forms a sister group to Microglossum (LANDVIK, SHAI-
LER & ERIKSSON 1996, GERNANDT et al. 2001). 

Morphological methods

All material was studied by light microscopy. Sections were
made using a freezing microtome (Physitemp Inst. Inc., Sadd-
le Brook, New Jersey). Congo Red in ammonia, Melzer's
reagent and Cotton Blue in lactic acid (HANSEN, PFISTER &
HIBBETT 1999) were used as mounting media. Morphological
studies focused on characters such as spore size and shape;
form and width of paraphyses; and presence and distribution
of gel tissue. 

Molecular methods

Total genomic DNA was extracted from fresh or dried spe-
cimens as follows: Small pieces (ca 3–5 mm) of ascomata
were surface sterilized in 30 % bleach for one minute, followed
by 70 % ethanol for one minute. Cleaned material was ground
in liquid nitrogen and suspended in 800 µl SDS DNA extrac-
tion buffer [1 % polyvinyl polypyrolidone (PVPP), 1 % SDS,
200 mM Tris pH 7.5, 250 mM NaCl, 25 mM EDTA, buffer
adjusted to pH 6.8]. The suspension was incubated at 65 °C for
about 60 minutes. Extraction was further carried-out using the
DNease tissue kit (QIAGEN Inc., Balencia, California) fol-
lowing the manufacturer's instructions. PCR in 50 µl reactions,

using Taq DNA polymerase (Invitrogen), was conducted in a
Perkin Elmer Cetus' 9600 GeneAmp PCR Instrument system
(Applied Biosystems, Foster City, California) under the fol-
lowing parameters: 94 °C for 35 seconds, 52 °C for 55 seconds,
72 °C for 1 minute and 52 seconds, for a total of 36 cycles,
and then 72 °C for 10 minutes for final elongation. The ITS
region, including the 5.8S rDNA, was amplified using the pri-
mers ITS4 and ITS5 (WHITE et al. 1990). The following RPB2
primers were specifically designed for Leotia species based
on the Leotia sequence published by LIU, WHELEN & HALL

(1999): RPB2-6FL (5' TGGGGTCTCGTCTGTCCTGC 3')
and RPB2-7RL (5' CCCATAGCTTGCTTACCCAT 3'). The-
se two primers amplified a region in the RPB2 gene between
motif 6 and 7, the most variable region among different groups
of ascomycetes (LIU, WHELEN & HALL 1999). PCR products
were purified using the Gel Extraction Kit (QIAGEN Inc., Ba-
lencia, California). Cycle sequencing was done using BigDye
Terminator (Perkin-Elmer Applied Biosystems, Foster City,
California) as follows: 96 °C for 10 seconds, 50 °C for 5 se-
conds, and 60 °C for 4 minutes, for a total of 25 cycles. In ad-
dition to the primers used for PCR, internal primers for ITS,
ITS 2 and ITS 3, were used for cycle sequencing (WHITE et
al. 1990). Based on the one Leotia sequence in LIU, WHELEN

& HALL (1999), two internal RPB2 primers were designed
specifically for Leotia species: RPB2-6.1L (5' TCTTGTGCT
AACAAGGG 3') and RPB2-6.3LR (5' AGTATCCACGTT
CTTGTTTC 3'). Sequencing reactions were purified using
ethanol/ammonium acetate precipitation. The purified se-
quence reactions were electrophoresed on an ABI PRISM 377
automated DNA sequencer (Perkin-Elmer Applied Biosys-
tems, Foster City, California). 

Data analyses

DNA sequences were edited and contigs assembled using Se-
quencher 3.0 (Gene Codes, Ann Arbor, Michigan). Sequences
have been deposited in GenBank TABLE I. The sequences were
aligned with the program Clustal X (THOMPSON et al. 1997)
and optimized manually in the data editor of PAUP* (SWOF-
FORD 2001). Sequences of the ITS rDNA and RPB2 gene as
individual and combined data sets were analyzed for all 33
taxa using maximum parsimony and maximum likelihood
methods performed in PAUP* (SWOFFORD 2001).

Maximum parsimony analyses were conducted using heur-
istic searches with 1000 random taxon addition, tree bisection
reconnection (TBR) branch swapping, MULPARS effective,
MaxTrees set to auto-increase and branches collapsed if ma-
ximum branch length is zero. The support of branches was de-
termined using 1000 bootstrap replicates with simple stepwise
addition (FELSENSTEIN 1985). Phylogenetic trees were gene-
rated with all characters included, equally weighted, and un-
ordered. Some regions of the ITS could not be unequivocally
aligned and therefore, the sensitivity of the data were explored
in parsimony analysis with gaps treated in different ways and
with inclusion or exclusion of ambiguous regions. Phylogen-
etic analyses of the data set were performed under the fol-
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Species names Geographic origins GenBank number
and numbers ITS/RPB2

L. lubrica 1MA Greenhill conservation land, Acton, MA, USA. 7-VII-98 D. Hibbett (FH) AY144551, AY144516

L. lubrica 2MA Fort Devens, MA, USA. 10-IX-98 G. A. Riner ZZ D103 (FH) AY144554, AY144519

L. lubrica 3MA Great Brook State Park, Carlisle, MA, USA. 14-VIII-96. D. H. Pfister  (FH) AY144544, AY144509

L. lubrica 4Chi Dongling Mountain, Beijing, China, 4-IX-99, Z. Wang WZ 76063 (FH) AY144556, AY144521

L. lubrica 5Chi Dongling Mountain, Beijing, China, 19-VIII-98,  Z. Wang WZ 75863  (FH) AY144550, AY144515

L. viscosa 1Chi Hailuogou, Gongga Mountain, NW Sichuan, China, 16-VIII-97, D.  Hibbett, AY144537, AY144502
WZ 2030 (FH)

L. viscosa 2MA Fort Devens, MA, USA, 30-VIII-98, G. A. Riner (FH) AY144538, AY144503

L. viscosa 3Chi Gongga Mountain, NW Sichuan, China, 23-VIII-97, Z. Wang WZ 2144 AY144535, AY144500  
D. Hibbett (FH)

L. viscosa 4Chi Gongga Mountain, NW Sichuan, China, 20-VIII-97 Z. Wang WZ 2107 (FH) AY144536, AY144501

L. viscosa 5VT Newfane Hill, Newfane, VT, USA, 22-VIII-82, D. H. Pfister (FH) AY144539, AY144504

L. atrovirens 1Chi Gongga Mountain, NW Sichuan, China, 23-VIII-97, Z. Wang WZ 2145 (FH) AY144567, AY144532

L. atrovirens 2NH Lincoln, NH, USA, 25-VII-99, W. Neill ZZ 99-20 (FH) AY144565, AY144530

L. atrovirens 3CAN Cory Lake, Chalk River, Ontario, Canada, IX-41, J. W. Groves, 7653 (FH) AY144566, AY144531

L. lubrica 4PA Alan Seeger State Park, PA, USA, 7-VIII-82,  D. H. Pfister (FH) AY144557, AY144522

L. atrovirens 5NJ Newfield, NJ, USA, 18-VIII-84, D. H. Pfister (FH) AY144563, AY144528

L. lubrica 6VT Powerline, Galistonbury, VT, USA, 29-VIII-81, D. H. Pfister (FH) AY144558, AY144523

L. atrovirens 02VT Middleberry Gap, Green Mountain National Park, VT, USA, 3-VIII-00, AY144564, AY144529
D. H. Pfister ZZ 00-02 (FH)

L. lubrica 04VT Middleberry Gap, Green Mountain National Park, VT, USA, 3-VIII-00, AY144559, AY144524
D. H. Pfister ZZ 00-04 (FH)

L. lubrica 14VT Norwich, VT, USA, 4-VIII-00, K. Peterson ZZ 00-14 (FH) AY144540, AY144505

L. lubrica 15VT Norwich, VT, USA, 4-VIII-00, K. Peterson ZZ 00-15 (FH) AY144560, AY144525

L. lubrica 21ME Eagle Hill, Steuben, ME, USA, 5-IX-00, K. Peterson ZZ 00-21 (FH) AY144561, AY144526

L. lubrica 25VT  Indian Brook Conservation, VT, USA, 30-VII-00, Z. Zhong ZZ 00-25 (FH) AY144555, AY144520

L. lubrica 32VA Jefferson National Forest, Giles County, VA, USA, 13-VIII-00, H. Miller AY144545, AY144510
ZZ 00-32  (FH)

L. lubrica 41CA Santa Cruz Co., Soquel State Forest, CA, USA, 5-III-94, K. Shanks DD AY144552, AY144517
KMS 441 (SFSU)

L. lubrica 80CA Wunderlich Park, San Mateo Country, CA, USA, 26-I-86, M. Seidl, DD AY144553, AY144518
MTS 880 (SFSU)

L. lubrica 1Eng Pruteland, Northumberland, Northeastern England, 28-IX-00, AY144546, AY144511
G. Beakes (FH)

L. lubrica 2Eng Allen Valley, Northumberland, Northeastern England, England, 14-X-00, AY144541, AY144506
G.  Beakes (FH)

L. lubrica 3Eng Kielder castle, Northumberland, Northeasten England, England, 8-X-00, AY144548, AY144513
G. Beakes (FH)

L. lubrica 4Eng Kingston Surrey, near Kew, Southeastern England, England,  21-X-00, AY144547, AY144512
G. Beakes (FH)

L. lubrica 1Aus Mt. Field National Park, Russel Falls, Tasmania, Australia, 27-V-87, AY144542, AY144507
P. K. Buchanan  PDD55184 (PDD)

L. lubrica 2New Otago Lakes, vic. Makarora, Cameron Flat, New Zealand, 3-IV-00, AY144543, AY144508
E. Horak PDD72250 (PDD)

L. lubrica 1Den Jutland, NW of Aars, Jenle plantage, Denmark, 12-VIII-00, T. Laessoe AY144562, AY144527
TL-5950 (C)

L. lubrica 1Nor Sogndal, Hella, nr Ferry port, Norway, 9-IX-00, T. Laessoe, TL-5985 (C) AY144549, AY144514

M. viridi Gongga Mountain, China, 23-VIII-97, Z. Wang  WZ 2149 (FH) AY144534, AY144499 

M. rufum "Ballycroy" near Toronto, Ontario, Canada, 5-VIII-89, D. H. Pfister (FH) AY144533, AY144498

Tab. 1: Specimens of Leotia and Microglossum species used in this study and their GenBank accession numbers.
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lowing options: all characters included with gaps treated as
missing data; regions with missing and ambiguous sequences
(as indicated through PAUP) deleted; all sequence characters
included with gapped positions coded (BAUM, SYTSMA &
HOCH 1994); a transition transversion ratio Ti/Tv = 1:3 (esti-
mated from maximum likelihood methods). 

For maximum likelihood analyses the model with the
highest maximum likelihood score was selected by Modeltest
version 3.06 (POSADA & CRANDALL 1998). The best-fit models
selected were TrNef + G and TrN + G, which are submodels
of GTR + G, for ITS and RPB2 data, respectively. The para-
meters estimated from the TrNef + G model were as follows:
-lnL = 1740.3920; equal base; substitution model: rate matrix:
R(a) [A-C] = 1.0000, R(b) [A-G] = 2.9619, R(c) [A-T] =
1.0000, R(d) [C-G] = 1.0000, R(e) [C-T] = 7.4791, R(f) [G-T]
= 1.0000; among-site rate variation: proportion of invariable
sites = 0; variable sites (G): Gamma distribution shape para-
meter = 0.3720. The parameters for TrN + G model were as
follows: -lnL = 2349.8379; Base frequencies: freqA = 0.2901,
freqC = 0.1964, freqG = 0.2511, freqT = 0.2623; Substitution
model: Rate matrix: R(a) [A-C] = 1.0000, R(b) [A-G] =
9.6700, R(c) [A-T] = 1.0000, R(d) [C-G] = 1.0000, R(e) [C-
T] = 17.5263, R(f) [G-T] = 1.0000; Among-site rate variation:
Proportion of invariable sites = 0; Variable sites (G): Gamma
distribution shape parameter = 0.1970. The general time-re-
versible (GTR) model (LANAVE et al. 1984, TAVARE 1986,
RODRIGUEZ et al. 1990) allows unequal base composition and
various probabilities for each of the six substitution types. G
accommodates heterogeneous rates of change at all sites as-
sumed to follow a discrete approximation of gamma distri-
bution (YANG 1994). A molecular clock (SANDERSON 1998)
was enforced under the best models, and a likelihood ratio test
(GOLDMAN 1993a, 1993b) was conducted to evaluate whether
the clock model could be accepted given the data. To lower
the search time some simple models were also carried out to
generate trees. The models were Jukes-Cantor (JC) (JUKES

& CANTOR 1969), Felsenstein 81 (F81) (FELSENSTEIN 1981),
Kimura 2-parameter (K2P) (KIMURA 1980), Hasegawa-Kishi-
no-Yano 85 (HKY 85) (HASEGAWA, KISHINO & YANO 1985)
and K2P + γ (KIMURA 1980, YANG 1994). In these analyses
missing and ambiguous regions, as indicated by PAUP, and
taxa with identical or almost identical sequences were exclu-
ded. Parameters were set to “estimate” in the analyses. One of
the most parsimonious trees was used as the starting tree to
enhance the speed of heuristic searches using TBR branch
swapping.

To test the congruency of the ITS and RPB2 data sets, the
partition homogeneity test, also called incongruence length
difference (ILD) test (FARRIS et al. 1994), was performed
using parsimony. To test the congruency of ITS and RPB2
trees several tree-based comparisons were conducted. These
tests were the non-parametric Winning-sites tests and Temple-
ton test (TEMPLETON 1983) in parsimony analysis and para-
metric Kishino-Hasegawa tests (KISHINO & HASEGAWA 1989)
under the best models in likelihood analyses. 

Results

RPB2 and ITS trees

In the 865 bp RPB2 region sequenced only three gaps were
needed to allow alignment and these gaps were uninformative.
A single most parsimonious tree (Fig.1, A) was generated with
all characters included, equally weighted, and gaps treated
as missing data (number of informative characters = 112, tree
length = 262 steps, CI = 0.844, RI = 0.876). On the contrary,
there were many insertions and deletions in the ITS sequences.
Four equally most parsimonious trees were generated from
the ITS data with the same setting (number of characters = 634,
number of informative characters = 122, tree length = 259
steps, CI = 0.826, RI = 0.898). The four ITS trees showed the
same groupings and the topologies were nearly identical ex-
cept for the position of one subgroup of two collections of L.
lubrica from California. The topology of the consensus tree
was identical to one of the most parsimonious trees (Fig. 1B).
Maximum likelihood and maximum parsimony analyses with
all characters equally weighted gave identical trees for ITS
and RPB2 data respectively. The molecular clock was rejected
for the ITS data (P = 0.000) under the best model, while it was
not rejected for the RPB2 data (P = 0.995). 

The molecular phylogenetic analysis showed para- and
polyphyly among the species as recognized morphologically.
Four well-supported groups (I–IV) were recognized in all
trees with bootstrap values ranging from 74 % to 100 %
(Figs. 1 A, B). Within the largest group, group I, six sub-
groups were recognized, indicated as a-f in Fig. 1; the group-
ings were identified in both the ITS and RPB2 trees (Figs. 1
A,B). Topologies of the single most parsimonious RPB2 tree
(Fig. 1B) and the ITS consensus are similar in most respects.
They differ in the positions of groups II and III. In the RPB2
tree group III forms a sister group to groups I and II; in the ITS
tree group II is sister to groups I and III. Arrows indicate the
nodes in question.

ITS - RPB2 congruency

The partition homogeneity test showed that there was no sig-
nificant conflicts between ITS and RPB2 data (100 replicates,
P = 0.06) even though the tree topologies differed. Non-para-
metric tests and the Kishino-Hasegawa test did not indicate
significant disagreement between the ITS and RPB2 trees
(RPB2 data set: Templeton P = 0.046, Winning-sites P =
0.125; ITS data set: Templeton P = 0.564, Winning-sites P =
1.000; Kishino-Hasegawa tests: RPB2 data set using model
TrN + \ with molecular clock enforced: P = 0.053, ITS data
set using model TrNef + γ with no clock enforced: P = 0.075).
These tests indicated that RPB2 and ITS data could be com-
bined. A single most parsimonious tree from the combined
data was found (Fig. 2, number of characters = 1499, number
of informative characters = 234, tree length = 522 steps, CI =
0.833, RI = 0.887) with a topology identical to the RPB2 tree
(Fig. 1A). Bootstrap support increased for most branches of
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the combined tree compared to the non-combined trees. Sup-
port for the monophylly of group I plus II (the L. lubrica – vis-
cosa group) is low (see arrow, Fig. 2).

Maximum parsimony analyses of the ITS data under dif-
ferent character treatments produced different topologies.
When gap positions and ambiguous sequences (defined by
PAUP as missing ambiguous data) were omitted, the topo-
logy produced was identical to the ITS tree generated from all
sequence characters included and gaps treated as missing data
(Fig. 1 B). However, when the gap coding was added or Ti/Tv
was defined as 1:3 groups II and III switched positions in the
tree and produced an ITS tree topology identical to the RPB2
tree (Fig. 2). 

Morphology and groups

Morphological studies allowed placement of taxa in the mor-
pho-species generally accepted. The size and shape of spores,

asci, and paraphyses were recorded and studied but these cha-
racters were not found to distinguish the lineages identified
by molecular data. Although the size and shape of the spores
varied (ranging from 16–29 µm long and 3–8 µm wide), the
variation was continuous and no disjunct patterns were found.

Based on our analyses none of the three morphologically
defined species, L. lubrica, L. viscosa and L. atrovirens, were
monophyletic (Figs. 1,2). Group I consisted of the “typical
collections” of L. lubrica (uniformly yellow throughout and
stipes usually remaining yellow when dried) and collections
of L. viscosa (green hymenium and yellow stipe). Ascomata
of typical L. lubrica and L. viscosa shared stipe color and stipe
tissue morphology. Group II included L. lubrica collections
with entirely yellow ascomata that became entirely dark green
when dried. It was difficult to distinguish these collections
from the typical L. lubrica collections in fresh conditions. In
group III all collections contained at least some green asco-

Fig.1: RPB2 and ITS trees with species of Leotia (L.) and Microglossum (M.). Numbers above the branches indicate the branch
length, and those below are bootstrap values. Arrows indicate the branches involved in the position of groups II and III. Collec-
tions are numbered and geographical details are as follows: MA, VT, VA, CA, PA, ME, NJ, NH for states in the USA; Aus = Aus-
tralia; Can = Canada; Chi = China; Den = Denmark; Eng = England; New = New Zealand. – A. RPB2 phylogram of the single
most parsimonious tree generated using heuristic search with 1000 replicates. Of 865 characters, all are unordered and equally
weighted; 112 are parsimony-informative. Gaps are treated as 'missing'. The length = 262; CI = 0.844; RI = 0.876. – B. One of
the four most parsimonious trees from ITS data using heuristic search with 1000 replicates. Of 634 characters, all are unordered
and equally weighted; 122 are parsimony-informative. Gaps are treated as 'missing'. The length = 259; CI = 0.826; RI = 0.898.
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Fig. 2: Phylogram of the single most parsimonious tree generated from combined ITS and RPB2 data using heuristic search
with 1000 replicates. Of 1499 characters, all are unordered and equally weighted; 234 are parsimony-informative. Gaps are
treated as 'missing'. The length = 522; CI = 0.833; RI = 0.887. Abbreviations and notations are as in Fig. 1. 



mata when fresh and all ascomata in this group became green
when dried. These collections were identified as L. atrovirens.
The presence of green ascomata distinguishes group III from
groups I and II. Collections in group IV, also identified as L.
atrovirens, were entirely green or dark green when fresh and
remained green when dried. Members of group IV have no
gelatinous tissue in the stipe. In these collections an outer
layer composed of parallel or someway interwoven hyphae is
found but there is no gelatinous matrix (Fig. 3 B, D). In collec-
tions from groups I, II and III one or more layers of gelatinous
tissue were noted in the stipes (Figs. 3 A, C). Four collections
(L. lubrica 1Aus, L. lubrica 32VA, L. lubrica 80CA and L.
atrovirens 2NH) showed only a single outer gel layer. All the
collections of Leotia we studied had gelatinous material in the
swollen head. Several morphological characters were map-
ped on the tree generated from the combined RPB2 and ITS
data sets (Fig. 2). 

Disscusion

This study casts doubt on the use of ascomatal gel as the single
character to distinguish a restricted family Leotiaceae in the
order Leotiales (KORF & LIZON 2001). We would refer group
IV collections, those lacking gel in the stipe, to Leotia based
on the presence of gel in the hymenium and the inamyloid
asci, as well as because of their morphology. They have more
or less globose hymenial heads as is characteristic of Leotia
species as opposed to Microglossum species that characteristi-
cally have elongate heads. Microglossum species have an
amyloid ascus pore that further distinguishes them from Leo-
tia species.

The results of this study bring into question the morpho-
logical system of species identification that is currently in use.
Color characters may be useful but need to be recorded in both
fresh and dried condition. The general view (DURAND 1908,
IMAI 1936, 1941) that microscopic features are of minor im-
portance for the taxonomy of these fungi has been confirmed
but some characters, particularly in the pigmentation of fresh
and dried ascomata and in distribution of gelatinous tissues
are shown to be of importance. In particular, the pigmentation
of the stipe provides some support for the four groups. It should
be noted that the composition and function of the green pigment
is not known. ARPIN (1969) studied the carotenoids in dis-
comycetes and used presence, absence and type of carotenoids
in his classification. He reported the presence of carotenes in
both L. lubrica and Microglossum olivaceum. Characterization
of the green pigment and its further study would be helpful.
Leotia lubrica forma stevensoni DURAND (1908) is distin-
guished from typical L. lubrica by the production of uniformly
greenish or olivaceous ascomata in age or in drying. In our
study, collections with this type of coloration form a mono-
phyletic group (group II).

This study does not provide a complete morphological
analysis of the species treated. Such a study, involving ascus

and crozier formation, histochemical study of asci in living
condition and other features called for by BARAL’S (1992)
vital taxonomy would greatly contribute to the understanding
of species in this genus. Such a study is beyond the scope of
the present work.  

One of the significant findings in our study was the ab-
sence of gelatinized tissue in stipes of two collections (group
III) identified as L. atrovirens (Fig. 3 B, D). These formed a
sister group to the rest of the ingroup. DURAND (1908), BENE-
DIX (1955) and MAINS (1956) described two gel layers in the
stipe of Leotia species. The presence of gelatinous layers,
along with inamyloid asci and more or less globose apothecial
heads, distinguish Leotia species from species of Microglos-
sum. MOORE (1965) summarized the previous studies of gel
tissue ontogeny in L. lubrica and detailed its development in
L. viscosa. Our studies confirm the presence of stipe gel in all
collections except those of group IV. Further study will be ne-
cessary to resolve the proper names for the two species with
entirely green ascomata.

Recognition of multiple taxa within Leotia by IMAI (1936,
1941) and BENEDIX (1955) has been followed by few workers,
but our studies indicate that there may be more genetic varia-
tion among Leotia collections than is commonly recognized.
These alternative systems will need to be re-evaluated. Al-
though sequence differences have been shown in this work, pro-
viding a formal classification will require reconciliation of the
limited morphological data with the sequence data and will re-
quire study of the ecology and biology of the species involved. 

The ITS rDNA and RPB2 gene sequences both provided
useful information for inferring phylogenetic relationships in
this study. The RPB2 and ITS trees (Fig. 1) generated with
characters equally weighted and gaps treated as missing data
differed from each other in the positions of group II and III
and in the monophylly of subgroup c of group I. The bootstrap
values supporting the positions of groups II and III were much
higher in the RPB2 tree than in the ITS tree (82 % versus 64 %,
indicated by arrows in Figs. 1 A, B). In the combined tree (Fig.
2), which agrees with the RPB2 tree in the position of group
III the support is also relatively low (indicated by arrows).

In addition to the use of RPB2 sequences in broad scale
phylogeny of fungi at ordinal level (LIU, WHELEN & HALL

1999), RPB2 sequence analyses have been successfully ap-
plied at family and genus levels (ZHANG & BLACKWELL 2001).
In their studies the region of the RPB2 gene between motif 6
and 7 (LIU, WHELEN & HALL 1999), the same region we used,
was sequenced in conjunction with sampling of the SSU and
LSU rDNA. They converted sequences to amino acids, which
were in turn used to infer higher-level relationships. Our study
has shown that nucleotides in this region provide good reso-
lution at the inter- and infra-specific level in Leotia.
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