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Laboulbeniales (Ascomycota, Laboulbeniomycetes) are biotrophic microfungi

always attached to the exoskeleton of their arthropod hosts. They do not form

hyphae or a mycelium; instead, they undergo determinate growth, developing

from a two-celled ascospore to form a multicellular thallus. Hesperomyces

virescens has been reported on over 30 species of ladybirds (Coleoptera,

Coccinellidae); in reality, it represents a complex of species, presumably

segregated by host genus association. In this study, we report on

Hesperomyces thalli on Hyperaspis vinciguerrae from the Canary Islands and

compare them with the Hesperomyces hyperaspidis described on Hyperaspis

sp. from Trinidad. We generated the sequences of the internal transcribed

spacer (ITS) region, the large subunit (LSU) nuclear ribosomal RNA gene, and

the minichromosome maintenance complex component 7 (MCM7) protein-

coding gene. Our phylogenetic reconstruction of Hesperomyces based on a

concatenated ITS–LSU–MCM7 dataset revealed Hesperomyces sp. ex Hy.

vinciguerrae as a member of the He. virescens species complex distinct from

He. virescens sensu stricto (s.s.). It also revealed that the Hesperomyces sp. ex

Chilocorus bipustulatus from Algeria is different fromHe. virescens s.s., which is

associated with Chilocorus stigma from the USA. This suggests that the species

of Hesperomyces are not solely segregated by host association, but that there

is also a biogeographical component involved. Based on these data, we

refrained from referring our material from Hy. vinciguerrae to He.

hyperaspidis. Finally, we discuss the usefulness of MCM7 as a useful marker

for species delimitation in Hesperomyces.

KEYWORDS

arthropod-associated fungi, Coccinellidae, DNA barcoding, integrative taxonomy,
MCM7, phylogeny, nuclear ribosomal DNA
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Introduction
There are various symbiotic interactions among insects and

fungi, ranging from mutualistic, such as those of the fungus-

farming leafcutter ants in the genera Acromyrmex and Atta

(Hymenoptera, Formicidae), to pathogenic and parasitic, such as

those of Beauveria spp. (Ascomycota, Sordariomycetes) and

Laboulbenia les (Ascomycota , Laboulbeniomycetes)

(Bustamante et al., 2019; Biedermann and Vega, 2020;

Haelewaters et al., 2021b). The species of Laboulbeniales are

biotrophic microfungi growing externally on the exoskeleton of

their arthropod hosts. They are characterized by the formation

of multicellular thalli instead of hyphae and a mycelium

(Blackwell et al., 2020; Haelewaters et al., 2021a). The study of

Laboulbeniales has been neglected by mycologists due to their

minute size, insignificant morphological appearance, and

inability to grow in axenic culture (Haelewaters et al., 2021b).

Recent molecular work has indicated that morphology alone is

not sufficient to delimitate species in several genera of

Laboulbeniales: Arthrorhynchus Kolen. (Haelewaters et al.,

2020), Chitonomyces Peyr. (Goldmann and Weir, 2012),

Coreomyces Thaxt. (Sundberg et al., 2018), Gloeandromyces

Thaxt. (Haelewaters and Pfister, 2019), Hesperomyces Thaxt.

(Goldmann et al., 2013; Haelewaters et al., 2018), Laboulbenia

Mont. and C.P. Robin (Haelewaters et al., 2019a), and

Nycteromyces Thaxt. (Van Caenegem and Haelewaters,

unpublished data). In some cases, too many morphological

species have been previously recognized. For example, in the

genus Chitonomyces, 13 morphological species actually

represent six phylogenetic species (Goldmann and Weir,

2012). Alternatively, too few species have been recognized in

other genera. This pertains to cryptic diversity, with one taxon

consisting of several morphologically indistinguishable species.

An example of this can be found in the genus Hesperomyces

(Haelewaters et al., 2018).

The genus Hesperomyces was erected by Thaxter (1891) to

accommodate Hesperomyces virescens Thaxt. on Chilocorus

stigma (Say, 1835). Since its description, He. virescens, in a

broad sense, has been reported on more than 30 species of

ladybirds (Coleoptera, Coccinellidae) (Haelewaters and De

Kesel, 2017). Haelewaters et al. (2018) revealed that He.

virescens is a complex of species segregated according to host

association based on landmark-based geometric, morphometric,

ecological, and molecular phylogenetic data. Since then,

three species within the complex have been described:

Hesperomyces halyziae (Haelewaters and De Kesel, 2020),

Hesperomyces harmoniae (Haelewaters et al., 2022b),

and Hesperomyces parexochomi (Crous et al., 2021).

In this paper, we present the first molecular data for He.

virescens sensu lato (s.l.) on Hyperaspis and expand our

understanding of the diversity within this complex. We also

evaluate the usefulness of the minichromosome maintenance
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complex component 7 (MCM7) gene as a secondary barcode

for Laboulbeniales.
Materials and methods

Collection of insects and
morphological study

Ladybirds were collected on the island of Fuerteventura,

Canary Islands, Spain. Specimens were shaken down from host

plants on a 1-m × 1-m white beating sheet and preserved in 90%

ethanol. Identification of the ladybirds was based on

morphological and anatomical features, including the type of

reproductive organs (Romanowski et al., 2019).

Thalli were removed from the left elytron under a Novex

RZB-PL 65.500 dissecting microscope (Novex, Arnheim,

Netherlands) at ×10 to ×45 magnification using Minutien pins

(#1208SA; BioQuip, Rancho Dominguez, CA, USA) inserted

onto wooden rods. Permanent slides were made using the

double-coverslip mounting technique as described by Liu et al.

(2020), with one modification: the thalli were placed in a droplet

of 1:1 Hoyer’s medium/glycerin mixture instead of pure Hoyer’s

medium because our Hoyer’s medium dried quickly. Mounted

thalli were viewed at ×200 to ×1,000 magnification under an

Olympus BH-2 microscope (Olympus, Center Valley, PA, USA).

Images were generated with a Nikon DS-Fi3 microscopy camera

mounted on an Eclipse Ni-U compound microscope (Nikon,

Nelville, NY, USA) equipped with differential interference

contrast (DIC) optics and processed using NIS-Elements BR

5.0.03 imaging software (Nikon).

The thalli, cells, structures, and ascospores were measured

using ImageJ 1.51h Image Processing and Analysis software

(Abramoff et al., 2004). All measurements were taken as

described and illustrated by Haelewaters et al. (2018).

Measurements in the morphological description were noted as

(a–)b–c–d(–e) [n], with a and e as extreme values, b and d denote

the mean ± standard deviation, c represents the mean, and n is

the number of structures measured. Ladybirds were preserved

at the Purdue Entomology Research Collection, West Lafayette,

Indiana, USA (PERC), and permanent slides of Laboulbeniales

were deposited in the Herbarium Universitatis Gandavensis,

Ghent, Belgium (GENT).
DNA extraction, PCR amplification,
and sequencing

DNA extractions were performed using the REPLI-g Single

Cell Kit (Qiagen, Stanford, CA, USA). A Minutien pin inserted

onto a wooden rod for holdfast was submerged in glycerin to

prevent the thalli from flying away during transfer. The thalli

were detached from the host and placed in a droplet of glycerin
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on a microscope slide. To ensure successful lysis, we cut every

perithecium transversally once using a no. 10 surgical blade on a

disposable Bard-Parker handle (Aspen Surgical, Caledonia, MI,

USA). The thalli were then placed in 0.2-ml PCR tubes with 4 µl

of phosphate-buffered saline. After the addition of 3 ml of

prepared D2 buffer, the tubes were incubated at 65°C for 30

min. Subsequent steps followed the manufacturer ’s

instructions (Qiagen).

The small subunit (SSU), the internal transcribed region

(ITS), and the large subunit (LSU) of the nuclear ribosomal RNA

gene were amplified using the following primer pairs: NSL1/

NSL2 for SSU (Haelewaters et al., 2015), ITShespL/ITShespR for

ITS (Haelewaters et al., 2019b), and LR0R/LR5 for LSU (Vilgalys

and Hester, 1990; Hopple, 1994). Additionally, the MCM7

protein-coding gene was amplified using the primer pair

MCM7-709for/MCM7-1384rev (Schmitt et al., 2009). The

PCR reactions (25 µl in total) consisted of 13.3 µl of

RedExtract Taq polymerase (Sigma-Aldrich, St. Louis, MO,

USA), 2.5 µl of each 10 µM primer, 5.45 µl of ddH2O, and 1

µl of DNA extract. The PCR cycling conditions used were as

follows: for SSU, an initial denaturation at 94°C for 5 min; 39

cycles of denaturation at 94°C for 30 s, annealing at 50°C for 45 s,

and extension at 72°C for 90 s; and a final extension at 72°C for

10 min; for ITS, an initial denaturation at 94°C for 3 min; 34

cycles of denaturation at 94°C for 1 min, annealing at 50°C for 45

s, and extension at 72°C for 90 s; and a final extension at 72°C for

10 min; for LSU, an initial denaturation at 94°C for 5 min; 34

cycles of denaturation at 94°C for 30 s, annealing at 50°C for 45 s,

and extension at 72°C for 1 min; and a final extension at 72°C for

7 min; for MCM7, an initial denaturation at 94°C for 5 min; 10

cycles of denaturation at 94°C for 45 s, annealing at 55°C (−1°C/

cycle) for 50 s, and extension at 72°C for 1 min; 24 cycles of

denaturation at 94°C for 45 s, annealing at 47°C for 50 s, and

extension at 72°C for 1 min; and a final extension at 72°C for

5 min.

The PCR products were purified using 1.5 µl of Exo-FAP (0.5

µl exonuclease I and 1 µl FAST alkaline phosphatase) (Thermo

Fisher Scientific,Waltham,MA, USA) per 10 µl of PCR product at

37°C for 15 min, followed by deactivation at 85°C for 15 min. The

purified PCR products were sequenced using an automated ABI

3730 XL capillary sequencer (Life Technology at Macrogen,

Amsterdam, Netherlands). The forward and reverse sequence

reads were assembled and edited in Sequencher version 5.4.6

(Gene Codes Corporation, Ann Arbor, MI, USA). Newly

generated sequences were submitted to NCBI GenBank (https://

www.ncbi.nlm.nih.gov/genbank/; accession numbers are shown

in Table 1).
Phylogenetic analyses

Newly generated sequences were supplemented by the

sequences downloaded from NCBI GenBank, resulting in 19
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SSU, 42 ITS, 35 LSU, and 17 MCM7 sequences (Table 1). We

used Hesperomyces ex Azya orbigera Mulsant, 1850,

Hesperomyces coccinelloides (Thaxt.) Thaxt., and Hesperomyces

coleomegillae W. Rossi and A. Weir as outgroups (Haelewaters

et al., 2022b). We aligned the sequences by locus with the E-INS-

i strategy using MAFFT (Multiple Alignment using Fast Fourier

Transform) version 7 (Kuraku et al., 2013; Katoh et al., 2019).

The sequences were manually trimmed using the BioEdit

Sequence Alignment Editor version 7.2.6 (Hall, 1999) and

concatenated in SequenceMatrix 1.9 (Vaidya et al., 2011).

We constructed five datasets: each marker individually (ITS,

LSU, and MCM7) and two concatenated datasets (ITS–LSU and

ITS–LSU–MCM7). The ITS dataset was partitioned into the

ITS1 spacer, the conserved 5.8S gene, and the ITS2 spacer. The

concatenated three-locus dataset included five partitions: the

ITS1 and ITS2 spacer regions, the 5.8S gene, LSU, and MCM7.

Likewise, the concatenated two-locus dataset included four

partitions (ITS1, 5.8S, ITS2, and LSU). Following previous

work in this species complex (Haelewaters et al., 2018;

Haelewaters et al., 2022b), we only used a selection of publicly

available sequences for the ITS, LSU, and the concatenated

datasets. To examine the utility of MCM7 as a secondary

barcode marker, we did use all available (17) Hesperomyces

sequences in the single-partition dataset of this marker.

Models for nucleotide substitution were selected for each

partition using ModelFinder (Kalyaanamoorthy et al., 2017)

according to the corrected Akaike information criterion

(AICc). Maximum likelihood (ML) analyses were inferred

using IQ-TREE (Nguyen et al., 2015) under partitioned

models (Chernomor et al., 2016). Ultrafast bootstrapping was

performed with 1,000 replicates (Hoang et al., 2018).

Phylogenetic trees were visualized in FigTree (http://tree.bio.

ed.ac.uk/software/figtree/) and edited using Inkscape (http://

www.inkscape.org).
Results

We generated 26 new sequences for this study (Table 1). The

concatenated ITS–LSU–MCM7 dataset consisted of 2,362

characters for 44 isolates. The selected models for each partition

in our concatenated dataset were: TPM2+F+G4 (ITS1, 414 bp; −lnL

= 4,130.865), TNe (5.8S, 160 bp; −lnL = 579.759), TIM2+F+G4

(ITS2, 272 bp; −lnL = 3,194.845), TIM+F+G4 (LSU, 894 bp; −lnL =

4,549.320), and TIM3e+G4 (MCM7, 622 bp; −lnL = 2,790.124). The

models for the unpartitioned alignments and the concatenated ITS–

LSU dataset were identical. The reconstructed phylogenies of He.

virescens s.l. are shown in Figure 1 (for the concatenated ITS–LSU–

MCM7 dataset), Figure 2 (for the concatenated ITS–LSU dataset),

and Figure 3 (for the ITS, LSU, and MCM7 datasets). The He.

virescens s.l. complex consists of 12 lineages, each with maximum

support. The SSU sequences are too conserved and cannot be used
frontiersin.org
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TABLE 1 Details of all the isolates used in the study, including species name, country of collection, host species, and the GenBank accession
numbers of the small subunit (SSU), internal transcribed spacer (ITS), large subunit (LSU), and minichromosome maintenance complex component
7 (MCM7) sequences.

Species Isolate Country Host SSU ITS LSU MCM7

Hesperomyces aff.
coleomegillae

D. Haelew. 1287b Panama Coleomegilla maculata (De Geer, 1775) OL335932 MG745334

Hesperomyces aff.
coleomegillae

D. Haelew. 1291c Panama Coleomegilla maculata OL335933 MG745335

Hesperomyces coccinelloides D. Haelew. 1428a Spain Stethorus tenerifensis Fürsch, 1987 OL335930 OP947140

Hesperomyces coccinelloides D. Haelew. 1428b Spain Stethorus tenerifensis OL335931 OL335915 OP947141

Hesperomyces halyziae D. Haelew. 955b Netherlands Halyzia sedecimguttata (Linnaeus, 1758) MG757813

Hesperomyces halyziae D. Haelew. 4209a Netherlands Halyzia sedecimguttata OP933652 OP933656 OP933659

Hesperomyces harmoniae D. Haelew. 648c South Africa Harmonia axyridis (Pallas, 1773) KU574863 KU574864 KU574865

Hesperomyces harmoniae D. Haelew. 1174a Netherlands Harmonia axyridis MG757815 MG745345

Hesperomyces harmoniae D. Haelew. 1268b Japan Harmonia axyridis MG760610 MG757829 MG745357 OP037811

Hesperomyces harmoniae D. Haelew. 1439a USA Harmonia axyridis MN397128 MN397128 OP037812

Hesperomyces harmoniae D. Haelew. 1551b Czech
Republic

Harmonia axyridis OL335935

Hesperomyces harmoniae D. Haelew. 1808b USA Harmonia axyridis OL335936 OL335921

Hesperomyces parexochomi D. Haelew. 1462a Spain Parexochomus nigripennis Erichson, 1843 MZ994855

Hesperomyces parexochomi D. Haelew. 1690d Spain Parexochomus nigripennis MZ994884 MZ994863 MZ994874 OP947154

Hesperomyces parexochomi D. Haelew. 1691c Spain Parexochomus nigripennis MZ994885 MZ994864 MZ994875 OP947153

Hesperomyces parexochomi D. Haelew. 1465a Spain Parexochomus quadriplagiatus (Wollaston,
1864)

MZ994881 MZ994860 MZ994871 OP947156

Hesperomyces parexochomi D. Haelew. 1465b Spain Parexochomus quadriplagiatus MZ994868 MZ994879 OP947155

Hesperomyces parexochomi D. Haelew. 1584a Spain Parexochomus quadriplagiatus MZ994880 MZ994858 MZ994869

Hesperomyces virescens s.l. D. Haelew. 1193g Denmark Adalia bipunctata (Linnaeus, 1758) MG760599 MG757817 MG745346 OP947147

Hesperomyces virescens s.l. D. Haelew. 1199h Sweden Adalia bipunctata MG757818 MG745347

Hesperomyces virescens s.l. D. Haelew. 1231a Italy Adalia bipunctata MG757821 MG745350 OP947146

Hesperomyces virescens s.l. D. Haelew. 1248b Italy Adalia decempunctata (Linnaeus, 1758) MG760606 MG757823 MG745353

Hesperomyces virescens s.l. D. Haelew. 1249a Italy Adalia decempunctata MG757824

Hesperomyces virescens s.l. D. Haelew. 655c South Africa Cheilomenes propinqua (Mulsant, 1850) KU574866 MG757804 KU574867

Hesperomyces virescens s.l. D. Haelew. 659b South Africa Cheilomenes propinqua MG757805 MG745342

Hesperomyces virescens s.l. D. Haelew. 1259a South Africa Cheilomenes propinqua MG757828

Hesperomyces virescens s.l. D. Haelew. 924a Panama Cycloneda sanguinea (Linnaeus, 1763) MG757808

Hesperomyces virescens s.l. D. Haelew. 1374a Panama Cycloneda sanguinea MG757831

Hesperomyces virescens s.l. D. Haelew. 3187a Czech
Republic

Hippodamia tredecimpunctata (Linnaeus,
1758)

OL335937 OL335923

Hesperomyces virescens s.l. D. Haelew. 1809c Chile Hippodamia variegata (Goeze, 1777) OL335922

Hesperomyces virescens s.l. D. Haelew. 954e USA Olla v-nigrum (Mulsant, 1866) MG757812 OP947148

Hesperomyces virescens s.l. D. Haelew. 1200h USA Olla v-nigrum MG760601 MG757819 MG745348 OP947150

Hesperomyces virescens s.l. D. Haelew. 1200i USA Olla v-nigrum MG760602 MG757820 MG745349 OP947149

Hesperomyces virescens s.l. D. Haelew. 3202a Mexico Olla v-nigrum OL335938 OL335925

Hesperomyces virescens s.l. JP352b USA Olla v-nigrum MG760581 MG757798 MG745337

Hesperomyces virescens s.l. D. Haelew. 1250b USA Psyllobora vigintimaculata (Say, 1824) MG760607 MG757825 MG745354

Hesperomyces virescens s.l. D. Haelew. 1250c USA Psyllobora vigintimaculata MG757826 MG745355 OP947151

Hesperomyces virescens s.l. D. Haelew. 1251b USA Psyllobora vigintimaculata MG760609 MG757827 MG745356 OP947152

Hesperomyces virescens s.s. D. Haelew. 1444a USA Chilocorus stigma (Say, 1835) MT373697 OL335916

Hesperomyces virescens s.s. D. Haelew. 1444b USA Chilocorus stigma MT373698 OL335917

Hesperomyces sp. D. Haelew. 4049a Algeria Chilocorus bipustulatus (Linnaeus, 1758) OP933651 OP933655 OP933658

Hesperomyces sp. D. Haelew. 3939b Spain Hyperaspis vinciguerrae Capra, 1929 OP933653 OP933649 OP947144

Hesperomyces sp. D. Haelew. 3939c Spain Hyperaspis vinciguerrae OP933654 OP933657 OP933650 OP947145

Hesperomyces sp. D. Haelew. 928g Panama Azya orbigera (Mulsant, 1850) MG760592 MG745343 MG745343
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to delimit species or to identify isolates to the species level

(Supplementary File 1).
Taxonomy

Hesperomyces hyperaspidis Thaxt., Mem. Am. Acad. Arts

Sci., ser. 2 16(1):111 (1931)

Material examined
Trinidad and Tobago. Trinidad Island, vicinity of the City of

Port of Spain, no date, leg. R. Thaxter, on Hyperaspis sp.

(Coleoptera, Coccinellidae) (no. 2896), slide FH 4989

(holotype at FH, one mature thallus and one broken thallus

from elytra); Northern Range hills, slopes of El Tucuche, April

1929, leg. P.J. Darlington, on Hyperaspis sp. (Coleoptera,

Coccinellidae) (no. 3637), slide FH 4990 (FH, one mature and

two submature thalli).

Hosts and distribution
Described on Hyperaspis sp. from Trinidad and reported

on Hyperapsis festiva Mulsant, 1850, from French Guiana
Frontiers in Fungal Biology 05
(Bernardi et al., 2014), although only studied based

on morphology.
Notes
The description of this species was based on only

one mature thallus (Thaxter, 1931); thus, variations in

morphology could not be evaluated. According to Thaxter

(1931), He. hyperaspidis differs from other species of

Hesperomyces by the length of the six lobes at the perithecial

tip (see Figure 4). Bernardi et al. (2014) evaluated the

usefulness of this morphological characterist ic and

concluded that the lengths of the lobes were overlapping

among species. As a result, these authors synonymized He.

hyperaspidis with He. virescens.

We had access to the protologue material of He.

hyperaspidis, which comprises the holotype slide (FH 4989)

and one uncited slide (FH 4990) made by Thaxter. Our

measurements of the single mature thallus in the holotype

slide differed from those in the protologue (Thaxter, 1931).

Thaxter’s measurements are sometimes at variance with

modern work; Haelewaters and Rossi (2015) reported on

measurements of thalli that differed from those reported by
FIGURE 1

Phylogenetic tree obtained from the maximum likelihood (ML) analysis of a three-locus (ITS–LSU–MCM7) dataset. For every node, the ML bootstrap
value (≥70) is given above or next to the branch leading to that node. Species within the Hesperomyces virescens complex are each indicated with their
own color. Color scheme from https://colorbrewer2.org by C.A. Brewer, Geography, Pennsylvania State University.
frontiersin.org
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Thaxter. A comparison of these measurements is given

in Table 2.

Hesperomyces sp. ex Hyperaspis vinciguerrae

Material examined
Spain. Canary Islands, Las Palmas, Fuerteventura Island,

Jandia, Ventura Shopping Center, 28.053 N, 14.324 W,

November 27, 2021, leg. Jerzy Romanowski, on Hy.

vinciguerrae Capra, 1929 (PERC), slide D. Haelew. 3939a

(GENT, nine mature thalli from the left elytron), and D.

Haelew. 3939d (GENT, 20 mature thalli from the left elytron).

Description
The thallus is (174–)200–222–244(–254) mm long from the

foot to the perithecial apex; hyaline to yellowish green [29]. The

receptacle is (41–)45–48–51(–53) mm long [29]. Cell I is (28–)

34–36–38(–39) × (13–)14–15–16(–17) mm, triangular to

quadrangular, and is longer than broad [28]. Cell II is (15–)

17–18–19(–20) × (9–)10–11–12(–13) mm, longer than broad,

and subtrapezoidal [22]. Cell III is (11–)12–13–14(–16) × (8–)9–

11–13(–16) mm, shorter than cell II, almost isodiametric, and is

dorsally convex [26]. The primary appendage is (38–)43–45–47

(–51) mm long, consisting of four superposed cells, with a
Frontiers in Fungal Biology 06
distinct constricted septum between cell III and the basal cell.

The basal cell is (12–)13–14–15(–17) mm long, longer than any

of the other cells of the appendage, the remaining cells each

bearing one antheridium directed outwardly and the uppermost

cell bearing one or two antheridia and a terminal spinous

process, which is the original ascospore apex [21]. The

antheridia are (13–)16–17–18(–20) mm long, with outwardly

straight to curved efferent necks, (6–)7–8–9(–10) mm [22]. Cell

VI is (22–)25–29–33(–37) × (15–)16–18–20(–22) mm, rather

stout, broadening distally [29]. The perithecium is (120–)134–

152–169(–178) × (28–)31–37–43(–47) mm, on average four

times longer than broad, asymmetric, fusiform, and broadest

near the middle, then gradually tapering toward a short, broad,

indistinct neck and an asymmetrical apex. The septa between the

horizontal tiers of wall cells are marked by constrictions. The

perithecial tip has two lower lobes, two upper lobes, and two

prominent lips surrounding the ostiole; lower lobes are minute,

while the upper lobes are (10–)11–12–13(–14) mm long,

unicellular, thumb-like, usually curved outwards, and their tips

not exceeding the perithecial apex. The ostiole has two lips, one

lip triangular and the other slightly shorter, rounded [29]. The

ascospores are two-celled, (46–)48–53–57(–57) × 4.1–4.6–5.1(–

5.3) mm, with a gelatinous sheath covering the larger cell [7].
FIGURE 2

Phylogenetic tree obtained from the maximum likelihood (ML) analysis of a two-locus (ITS–LSU) dataset. For every node, the ML bootstrap value
(≥70) is given above or next to the branch leading to that node. Species within the Hesperomyces virescens complex are each indicated with
their own color, as in Figure 1.
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Material sequenced
Spain. Canary Islands, Las Palmas, Fuerteventura Island, Jandia,

Ventura Shopping Center, 28.053N, 14.324W,November 27, 2021,

leg. Jerzy Romanowski, on Hy. vinciguerrae (PERC), isolate D.
Frontiers in Fungal Biology 07
Haelew. 3939b (six mature thalli, left elytron; SSU = OP933653,

LSU = OP933649, MCM7 = OP947144); ibid., isolate D. Haelew.

3939c (five mature thalli, left elytron; SSU = OP933654, ITS =

OP933657, LSU = OP933650, MCM7 = OP947145).
A

B

C

FIGURE 3

Phylogenies of the Hesperomyces virescens species complex, reconstructed from the internal transcribed spacer (ITS) (A), large subunit (LSU) (B),
and minichromosome maintenance complex component 7 (MCM7) (C) datasets. For every node, the ML bootstrap value (≥70) is given above or
next to the branch leading to that node. Species within the He. virescens complex are each indicated with their own color, as in Figure 1.
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Hosts and distribution
Reported on Hy. vinciguerrae Capra, 1929, from Spain

(this paper).

Notes
Hesperomyces sp. ex Hy. vinciguerrae is part of the near-

cryptic He. virescens species complex (Haelewaters et al., 2018).

Morphologically, it is very similar to the other species in this

complex (Figure 5). Given that our material was associated with

a Hyperaspis host, we compared the morphological

characteristics with those of He. hyperaspidis. The thalli from

our collection had short lobes at the tip of the perithecium,
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similar to those of He. hyperaspidis described by Thaxter (1931).

Most of the thalli were bent in cell VI, mostly at a 90° angle

toward anterior. This is different from the available material of

He. hyperaspidis, but this difference could be attributed to

morphological plasticity. The receptacle of the thallus in the

holotype of He. hyperaspidis is 10 µm longer than the mean

length of the receptacle we measured in our material. The total

length of the thalli we studied is, on average, 30 µm longer than

the holotype of He. hyperaspidis.

Hesperomyces sp. ex Hy. vinciguerrae formed a distinct

species-level clade supported by ITS, LSU, and MCM7 data.

Unique molecular autapomorphies and motifs in the ITS were
TABLE 2 Measurement of the different structures of the single mature thallus of Hesperomyces hyperaspidis in Thaxter’s holotype slide, as
described in Thaxter (1931) and re-measured by us.

Receptacle Cell VI Length of appendage Perithecium Total length

Thaxter (1931) 55 × 17 21 × 17 62 110 × 25 180

Our measurements 58 × 19 21 × 16 58 119 × 37 193
Measurements are noted as length × width in micrometers, unless stated otherwise.
FIGURE 4

Hesperomyces hyperaspidis Thaxt., slide FH 4989 (holotype). (A) An enlargement of Thaxter’s (1931) original Plate XX: Figure 22. Courtesy of the
Archives of the Farlow Herbarium of Cryptogamic Botany, Harvard University. (B) Photo of the same thallus that stood model for Thaxter’s
drawing. Scale bar 50 mm.
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found at positions 130–132 (5'-TTC-3') (insertion), 140 (C), 148

(A), 179 (G), 197 (C), 206 (G), 232 (G), 250 (G), 343 (G), 391

(C), 403 (T), 407 (T), 597 (T), 658 (T), 682 (C), 683 (A), 724 (G),

742 (A), 818 (G), and 827 (G); in the LSU at positions 116 (G),

173 (C) (insertion), 176 (A), 416 (T), 436 (C), 480 (C), and 490

(A); and in MCM7 at positions 126 (A), 288 (T), 504 (A), and

528 (A).

Using the NCBI BLAST tool, we searched for sequences with

the highest similarity to our newly generated ITS and LSU

sequences of Hesperomyces sp. ex Hy. vinciguerrae. For the ITS
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sequence, these include: He. halyziae [isolate D. Haelew. 955b,

GenBank MG757813; identity = 717/765 (94%), 6 (0%) gaps];

He. harmoniae [isolate D. Haelew. 1439a, GenBank MN397128;

identity = 720/772 (93%), 8 (1%) gaps]; He. harmoniae [isolate

D. Haelew. 1268b, GenBank MG757829; identity = 720/772

(93%), 8 (1%) gaps]; He. harmoniae [isolate D. Haelew. 943b,

GenBank MG757810; identity = 720/772 (93%), 8 (1%) gaps];

and He. harmoniae [isolate D. Haelew. 1808b, GenBank

OL335936; identity = 720/772 (93%), 8 (1%) gaps]. For the

LSU sequences, these are: He. virescens ex Adalia bipunctata
FIGURE 5

Hesperomyces sp. ex Hyperaspis vinciguerrae. (A) Mature thallus, slide D. Haelew. 3939a. (B) Mature thallus, slide D. Haelew. 3939a. Cell VI is
highly bent. (C) Perithecial tip of a mature thallus, slide D. Haelew. 3939d. Indicated are the two lower lobes (ll), the two upper lobes (UL), and
the two perithecial lips (pl), similar to Hesperomyces hyperaspidis. Scale bar 50 mm.
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[isolate D. Haelew. 1232a, GenBank MG745351; identity = 882/

899 (98%), 1 (0%) gap]; He. virescens ex A. bipunctata [isolate D.

Haelew. 1199h, GenBank MG745347; identity = 882/899 (98%),

1 (0%) gap]; He. virescens ex A. bipunctata [isolate D. Haelew.

1231a, GenBank MG745350; identity = 882/900 (98%), 2 (0%)

gaps]; He. virescens ex A. bipunctata [isolate D. Haelew. 1231a,

GenBank MG745350; identity = 882/900 (98%), 2 (0%) gaps];

He. parexochomi [isolate D. Haelew. 1584a, GenBank

MZ994870; identity = 882/900 (98%), 2 (0%) gaps]; and He.

parexochomi [isolate D. Haelew. 1693a, GenBank MZ994870;

identity = 881/899 (98%), 1 (0%) gap].
Discussion

MCM7 as a secondary marker
in Laboulbeniales

The ITS region has been proposed as a universal barcode for

fungi (Schoch et al., 2012). General fungal ITS primers have been

used in a few molecular studies to successfully amplify the ITS

region to delimit the species of Laboulbeniales (e.g., Goldmann

and Weir, 2012; Goldmann et al., 2013; Sundberg et al., 2018).

However, the amplification success of the ITS region substantially

differed among the taxa of Laboulbeniales when using general

fungal primers such as ITS1f, ITS9mun, and ITS4 (Haelewaters

et al., 2015; Haelewaters et al., 2018; Walker et al., 2018). A new

primer pair, ITSHespL/ITSHespR, with improved specificity for

Hesperomyces was described (Haelewaters et al., 2018). Since this

design, we have successfully used these specific primers to amplify

the ITS region of Hesperomyces, including in this study.

Recent studies have shown that LSU, in contrast to ITS, is

easier to amplify using general fungal primer pairs such as LR0R/

LR5, LIC24R/LR3, and NL1/NL4 (Haelewaters et al., 2015;

Haelewaters et al., 2018; Walker et al., 2018). Haelewaters

et al. (2018) reported that both the ITS and LSU datasets

resulted in high support for the species-level clades within He.

virescens s.l. and suggested further investigation of LSU as a

secondary barcode in Laboulbeniales. Thus far, LSU has been

used in several studies delimiting species within Arthrorhynchus,

Coreomyces, Gloeandromyces, Hesperomyces, and Laboulbenia

(Haelewaters et al., 2018; Sundberg et al., 2018; Haelewaters and

Pfister, 2019; Haelewaters et al., 2020; Haelewaters and De Kesel,

2020; Liu et al., 2020).

Liu et al. (2020) generated the first sequences of the

translation elongation factor 1a (TEF1) for Gloeandromyces

and Nycteromyces species. The phylogeny based on these TEF1

sequences matched the one based on the LSU sequences, with

high support for the species clades. To date, no other studies

have used TEF1 for species delimitation in Laboulbeniales. We

continued to test the amplification success of the TEF1 gene in

different genera of Laboulbeniales and have generated sequences

for isolates of Arthrorhynchus (seven sequences), Herpomyces
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Thaxt. (one sequence), Hesperomyces (10 sequences), and

Laboulbenia (one sequence) (Haelewaters, unpublished data).

In this study, we expanded on the first efforts by Haelewaters

et al. (2022b) to generate the MCM7 sequences of Hesperomyces

species. We generated 15 new MCM7 sequences of the

Hesperomyces species using the primer pair MCM7-709for/

MCM7-1384rev and the two-step touchdown PCR protocol

indicated above. The amplification of MCM7 proceeded

without issue for all extracts of Hesperomyces in the trial. We

also successfully amplified the MCM7 gene for the isolates of

Appendiculina (one sequence), Corethromyces (one sequence),

Herpomyces (three sequences), Laboulbenia (five sequences),

and Nycteromyces (eight sequences) under the same cycling

conditions (Van Caenegem and Haelewaters, unpublished data).

Here, we presented the first phylogeny of Hesperomyces based

on MCM7. The dataset included Hesperomyces isolates removed

from six host species. All isolates were resolved in six monophyletic

clades, and each of the tip nodes (species) was highly to maximally

supported in the MCM7-based phylogeny (Figure 3C), similar to

what Haelewaters et al. (2018) reported for their phylogenetic

reconstructions based on ITS and LSU. Based on available data,

we can only compare ITS, LSU, and MCM7 for their efficacy to

delimit species in Hesperomyces. Support for tip nodes was

comparably high in all three markers. Conversely, neither marker

has the discriminative power to resolve deeper nodes within the

complex—but that was not the goal of this study. Given the

difficulty to amplify the ITS region, we suggest exploring the

utility of MCM7 as a secondary marker in other genera of the

thallus-forming Laboulbeniomycetes. We conclude with the

suggestion that MCM7 is a useful region for the delimitation and

identification of Hesperomyces species.
Species of Hesperomyces are segregated
by host association and geography

All species-level lineages within He. virescens s.l. received

maximum support in our multilocus phylogeny (ITS–LSU–

MCM7). The species within this complex are morphologically

very similar. However, based on our observations, it seems that

the thalli and ascospores of Hesperomyces sp. exHy. vinciguerrae

(thallus, 174–254 µm; ascospores, 46–57 µm) are much smaller

than those of He. halyziae (thallus, 335–453 µm; ascospores, 70–

85 µm), He. harmoniae (thallus, 290–653 µm; ascospores, 66–

106 µm), andHe. parexochomi (thallus, 251–441 µm; ascospores,

59–74 µm) (Haelewaters and De Kesel, 2020; Crous et al., 2021;

Haelewaters et al., 2022b).

The one-host-one-parasite (1H1P) model states that species

of Laboulbeniales with a haustorium, like those in the genus

Hesperomyces, have higher host specificity compared to species

without a haustorium because the fungi are in closer contact

with their host (Haelewaters et al., 2022a). The species within

He. virescens s.l. are seemingly segregated by host genus. Support
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is provided by He. virescens s.l. isolates removed from Adalia,

Hippodamia, and Parexochomus spp. An undescribed species of

Hesperomyces has been found on Adalia bipunctata (Linnaeus,

1758) and A. decempunctata (Linnaeus, 1758) in Denmark, Italy,

and Sweden (Haelewaters et al., 2018). Another undescribed

species of Hesperomyces has been found on both Hippodamia

variegata (Goeze, 1777) from Chile and Hippodamia

tredecimpunctata (Linnaeus, 1758) from the Czech Republic.

Finally, He. parexochomi from the Canary Islands is found on

two host species: Parexochomus nigripennis Erichson, 1843, and

Parexochomus quadriplagiatus (Wollaston, 1864) (Crous et al.,

2021). In addition, He. harmoniae is found almost all over the

world where its host, Harmonia axyridis (Pallas, 1773), has been

introduced, and there have been some observations of

Hesperomyces-infected Ha. quadripunctata (Pontoppidan,

1763), although no isolates are available to confirm their

identity (Haelewaters et al., 2022b).

In an earlier version of this paper, we planned to reinstate

He. hyperaspidis since we thought our thalli from Hy.

vinciguerrae belonged to this species. However, during the

review process, we generated the sequences of Hesperomyces

sp. ex Chilocorus bipustulatus from Algeria. This is an interesting

case, as species within the He. virescens complex are thought to

be segregated by their host genus association and He. virescens

sensu stricto (s.s.) is described from Ch. stigma from the USA

(Thaxter, 1891; Haelewaters et al., 2018; Haelewaters et al.,

2022b). To our surprise, Hesperomyces sp. ex Ch. bipustulatus

does not form a monophyletic clade with He. virescens s.s. ex Ch.

stigma and is retrieved sister to He. parexochomi in both the ITS

and LSU phylogenies with maximum support. This result

reshaped our thinking on the diversification within the He.

virescens complex: it appears that species are not simply

segregated by their host genus association and that there is a

geographical component involved as well.

The host of the holotype material of He. hyperaspidis, an

unidentified species of Hyperaspis, was collected in Trinidad.

The infected Hy. vinciguerrae in this study was collected in the

Canary Islands. To avoid future taxonomic issues, we refrained

from 1) assigning our material of Hesperomyces sp. ex Hy.

vinciguerrae to He. hyperaspidis; 2) reinstating said species;

and 3) formally describing Hesperomyces sp. ex Hy.

vinciguerrae as a new species. However, given all the available

knowledge, it stands without a doubt that He. hyperaspidis

should not be considered a synonym of He. virescens s.s., in

contrast to the conclusion of Bernardi et al. (2014) based on

morphology. Moving forward, Hyperaspis ladybirds should be

collected in Trinidad and other locations around the world to

screen for Hesperomyces thalli, extract DNA, and compare the

sequences with the recent material from the Canary Islands. We

also refrained from describing Hesperomyces sp. ex Ch.

bipustulatus because we found only juvenile thalli.
Frontiers in Fungal Biology 11
Conclusion

Thalli of Hesperomyces from a Hy. vinciguerrae ladybird,

recently collected in the Canary Islands, triggered an integrative

taxonomy investigation into the identify of this fungus. Based on

the phylogenies inferred from single-locus and multilocus ITS,

LSU, and MCM7 data, we found that the thalli on Hy.

vinciguerrae belong to another species than He. virescens s.s.,

as do the thalli on Ch. bipustulatus from Algeria. The hypothesis

that species within the He. virescens complex are segregated by

their host association appears to be complicated by geography.

Thus, we have not assignedHesperomyces sp. exHy. vinciguerrae

to He. hyperaspidis, which is described from an unidentified

Hyperaspis ladybird collected in Trinidad. However, there is

good reason to consider He. hyperaspidis as a unique species

separate from He. virescens s.s.
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in Figure 1.
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